Medical follow-up and current treatment on the different MPS-types

Dr. Christina Lampe

Center for Rare Diseases

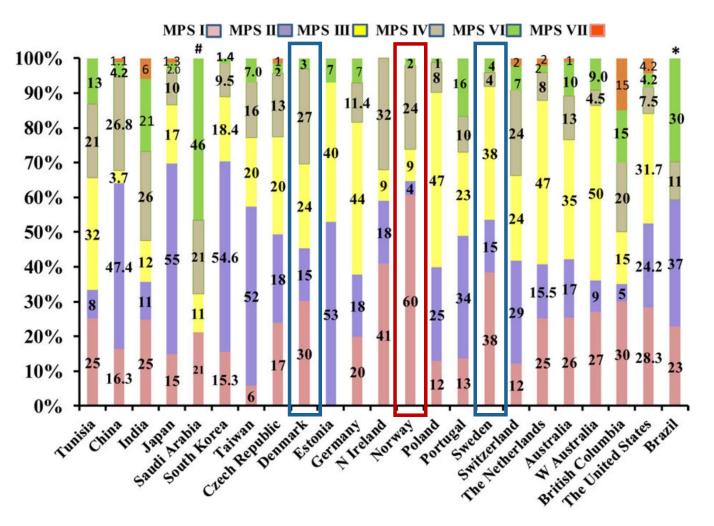
Department of pediatric neurolog, neuromuscular diseases and social pediatrics

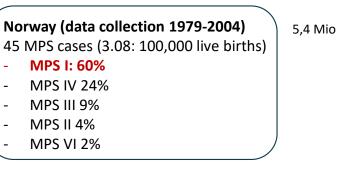
University of Giessen/Marburg, Germany

Disclosures

- Travel grants, speakers fee and honorarium for advisory boards from:
 - BioMarin
 - Chiesi
 - Amicus
 - Alexion
 - Sanofi
 - Takeda

Mainz





Gießen

Epidemiology

Schweden (data collection 1975-2004)

52 MPS cases (1.75: 100,000 live births)

- **MPS I: 38%**
- **MPS III: 38%**

-

-

-

-

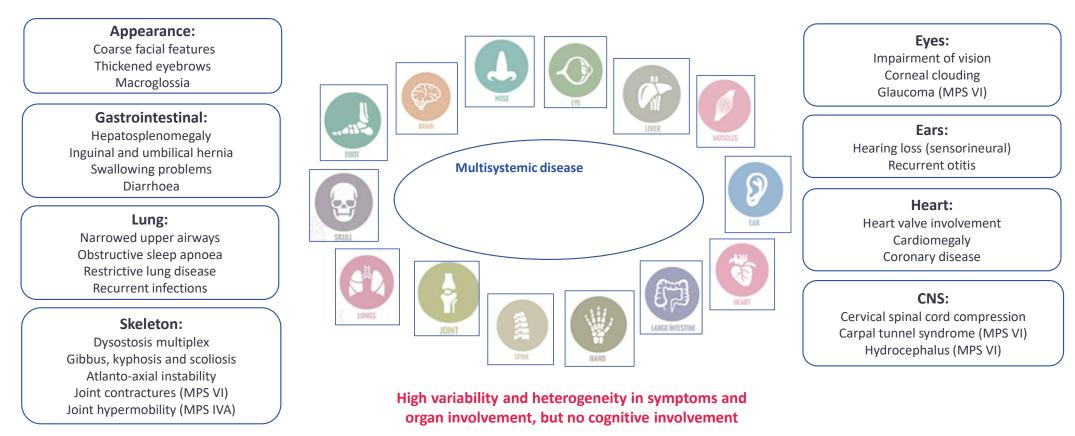
- MPS II: 15%
- **MPS IV: 4%**
- **MPS VI: 4%**

Denmark (data collection 1975-2004)

33 MPS cases (1.77: 100,000 live births) 5,8 Mio

- **MPS I: 30%**
- MPS IV: 27%
- **MPS III: 24%**
- MPS II: 15%
- **MPS VI: 3%**

Khan SA, Peracha H, Ballhausen D, Wiesbauer A, Rohrbach M, Gautschi M, Mason RW, Giugliani R, Suzuki Y, Orii KE, Orii T, Tomatsu S. Epidemiology of mucopolysaccharidoses. Mol Genet Metab. 2017 Jul;121(3):227-240.

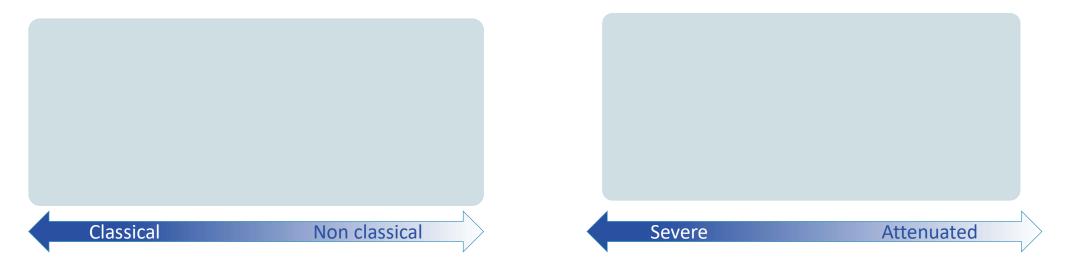

10,4 Mio

MPS classification

MPS type	Eponym(s)	Enzyme deficiency	GAG stored	CNS involvement	Treatment
	Hurler		DS,HS		HSCT, (ERT)
MPS I	Hurler-Scheie	alpha-L-iduronidase	DS,HS	+/-CNS involvement	HSCT or ERT
	Scheie		DS,HS		ERT
MPS II	Hunter type A Hunter type B	Iduronate-2-sulfatase	DS,HS	+/- CNS involvement	ERT, (HSCT)
MPS III	Sanfilippo A Sanfilippo B Sanfilippo C Sanfilippo D	Heparan N-sulfatase alpha-N-acetylglucosaminidase Acetyl-CoA: alpha glucosaminide Acetyltransferase N-acetylglucosamine-6-sulfatase	HS HS HS	Mainly CNS involvement	no
MPS IV	<mark>Morquio A</mark> Morquio B	N-acetyl-galactosamine-6-sulfatase alpha-galactosidase	KS,CS KS	No CNS involvement	ERT
MPS VI	Maroteaux-Lamy	Arylsulfatase B or ASB	DS		ERT, (HSCT)
MPS VII	Sly	Alpha glucuronidase	DS,HS,CS	+/ - CNS involvement	ERT
MPS IX	Hyaluronidase Def.	Hyaluronoglucosaminindase-1	HA	No CNS involvement	no

CS, chondroitin sulfate, DS, dermatan sulfate; ERT, enzyme replacement therapy; GAG, glycosaminoglycan; HA, hyaluronan; HS, heparan sulfate; KS, keratan sulfate; MPS, mucopolysaccharidoses. Neufeld EF, Muenzer J. The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. Vol 3. 8th ed. New York: McGraw-Hill; 2001:3421–3452.

Multisystemic disease: signs and symptoms in MPS IVA and MPS VI



MPS, mucopolysaccharidoses.

Wraith JE, Clarke JTR. In: Physician's Guide to the Treatment and Follow-up of Metabolic Diseases. 2006:195–203.

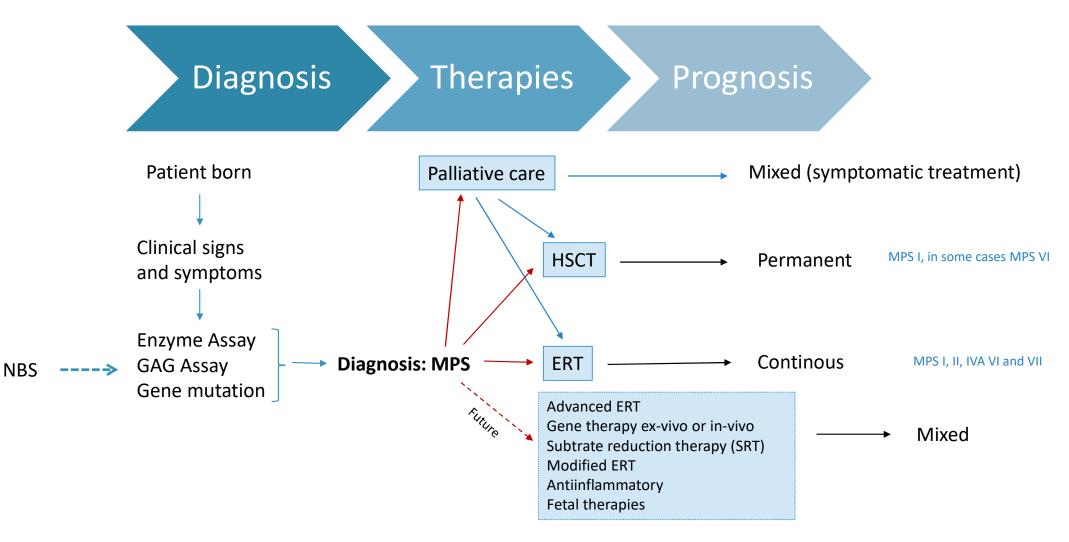
Spectrum of disease severity and disease progression in MPS IVA and MPS VI

- Variability in signs and symptoms
- Wide spectrum of disease severity
- Disease severity in specific organs may differ in the same patient

MPS, mucopolysaccharidoses.

Presenter's own images, used with the consent of the patient and/or family/caregiver where appropriate.

History of life expectancy


Estimates suggest that more than 50% of people with inherited metabolic diseases are adults, in MPS patients live beyond 20 years of age

in patients with MPS IVA (N = 27)

Mitchell J, Berger KI, Borgo A, Braunlin EA, Burton BK, Ghotme KA, Kircher SG, Molter D, Orchard PJ, Palmer J, Pastores GM, Rapoport DM Wang RY, White K. Unique medical issues in adult patients with mucopolysaccharidoses. Eur J Intern Med. 2016 Oct;34:2-10.

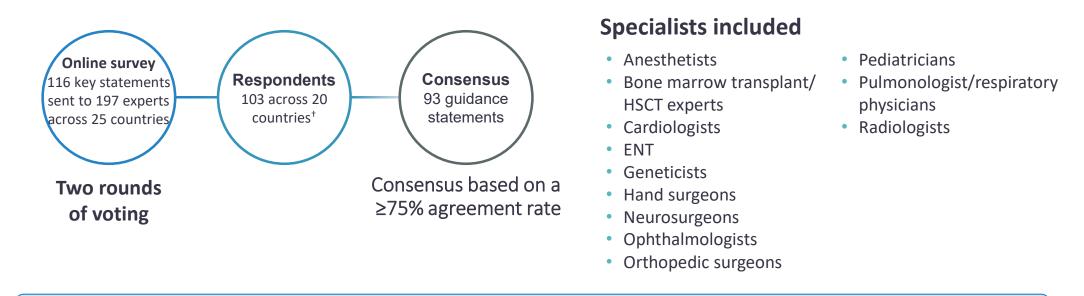
Current and future management of MPS disorders

Stapleton M,. Critical review of current MPS guidelines and management. Mol Genet Metab. 2019 Mar;126(3):238-245.

Difficulties with current guidelines

- MPS are rare diseases
- systematic reviews are limited due to the small number of patients
 - insufficient and potentially inaccurate data
- Unmet challenge: to collect systematic clinical data at both National and International levels
 - the establishment of an international registration system for each type of MPS is required
- most registries are sponsored by pharmaceutical companies and access to the registry is restricted to the consultant doctors or panel members
 - registry data should also be established and exchanged independent of pharmaceutical companies

Management guidelines MPS

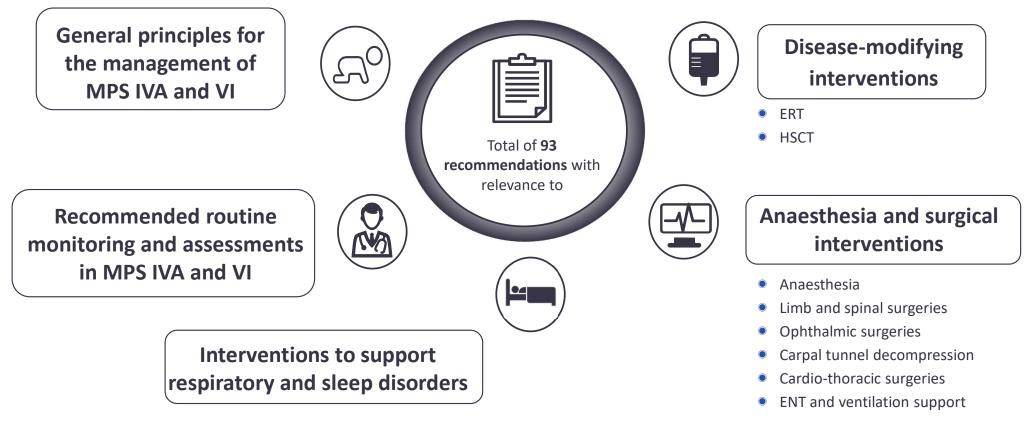

Guideline	Authors	Year	MPS Disorder	Limitation	Guideline	Authors	Year	MPS Disorder	Limitation
Mucopolysaccharidosis I: Management and treatment guidelines	Muenzer et al	2009	MPS I	Biomarin/ Genzyme sponsorship; historical grouping of phenotype severity	The international guidelines for the management of treatment	Hendriksz et al.	2015	MPS IVA	Biomarin sponsorship. ERT only therapeutic option consdered for patients. Did not consider HSCT
Guidelines for the management of MPS I	Martins et al.	2009	MPS I	Genzyme sponsorship	of Morquio A syndrome				as viable treatment option.
ERT and/ or HSCT at diagnosis with MPS I: results of a European concensus procedure	de Ru et al.	2011	MPS I	Biomarin/ Genzyme sponsorship	LSDP guidelines and application form for subsidized treatment of MPS IVA	Australian government sponsored	2015	MPS IVA	Limited tests of efficacy and data utilized. No data reported from surgical intervention. Did not consider HSCT as viable
ERT with Laronidase for treating MPS I	Jameson et al.	2013	MPS I	Biomarin sponsorship; only consideration for patients older than 2.5. Did not consider HSCT as viable treatment option.	Elosulfase alfa for treating Mucopolysaccharidosis type	NICE	2015	MPS IVA	treatment option. Guideline to be eligibility for ERT. Lack of data for palliative care. Did not consider HSCT as
LSDP guidelines and application form for subsidized	Australian government	2015	MPS I	Did not consider HSCT as viable treatment option	IVA				viable treatment option.
Mucopolysaccharidosis Type II: European recommendations	treatment of MPS I sponsored LSDP guideline Aucopolysaccharidosis Type Shire Human Genetic Therapies application form for European recommendations Scarpa at treatment of M	LSDP guidelines and application form for subsidized treatment of MPS VI	Australian government sponsored	2015	MPS VI	Lack of palliative care consideration. Did not consider HSCT as viable treatment option.			
for the diagnosis and management of a rare disease	aÎ.	2011	MPS II	involvement from fields of genetics and biochemistry. Did not consider HSCT	Enzyme replacement therapy with gasulfase for	Brunelli et al.	2016	MPS VI	Lack of longitudinal data, ERT was the only therapy considered, lack of accurate measures of
LSDP guidelines and	Australian	2015	MPS II	Lack of consideration of palliative care options. Did not	mucopolsaccharidosis				efficacy.
application form for subsidized treatment of MPS II	sponsored consider HSCT as viable Recommendation	Recommendations for the	Akyol, MU	2019	MPS VI MPS IVA				
Practical guidelines for the management of mucopolysaccharidosis (MPS) type II	Eto et al. Japanese government sponsored	2017	MPS II	Historical treatment of phenotype severity	management of MPS VI and systematic evidence and cons based guidance	sensus-			
Inclusions of hematopoietic stem cell transplanation of mucopolysaccharidosis type II	Brazilian government sponsored	2018	MPS II	ERT and palliative care are not mentioned.	Sanfilippo syndrome: consens Guidelines for clinical care	sus Muschol.	2022.	MPSIII	
					There are no guide	elines for M	PS VII, N	/IPS IX and	alpha-mannosidosis

Stapleton M,. Critical review of current MPS guidelines and management. Mol Genet Metab. 2019 Mar;126(3):238-245.

Recommendations for the management of MPS MPS IVA and MPS VI

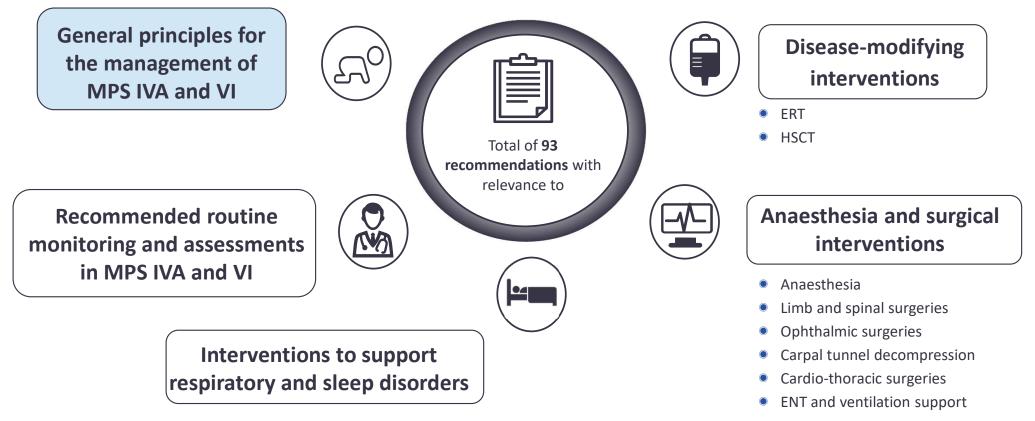
Example for well prepared recommendations Very useful all other MPS except MPS III no recommendations for cognitive involvement

A modified Delphi methodology was used to reach consensus among experts



- Metabolic specialist: ≥5 years' experience of managing patients with MPS, preferably MPS IVA or VI
- Specialist surgeons/anesthesists: ≥3 years' experience of manging patients with MPS, preferably MPS IVA or VI

Excluded due to not meeting the minimum experience threshold: [†]7


ENT, ear, nose, and throat; HSCT, hematopoeitic stem cell transplant, MPS, mucopolysaccharidosis

Recommendations cover five key areas of patient management

ENT, ear, nose, and throat; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplantation; MPS, mucopolysaccharidosis. Akyol MU et al. Orphanet J Rare Dis. 2019;14:118; Akyol MU et al. Orphanet J Rare Dis. 2019;14:137.

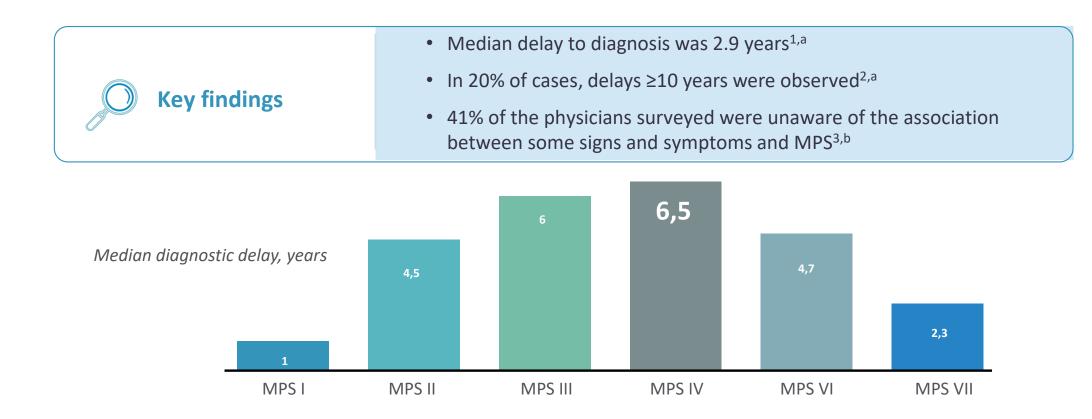
Recommendations cover five key areas of patient management

ENT, ear, nose, and throat; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplantation; MPS, mucopolysaccharidosis. Akyol MU et al. Orphanet J Rare Dis. 2019;14:118; Akyol MU et al. Orphanet J Rare Dis. 2019;14:137.

Early diagnosis is key to enabling prompt and appropriate management and improving outcomes

Diagnosis during infancy is critical to optimize patient outcomes

A physician with MPS experience should conduct the first consultation following diagnosis



"The first consultation should be conducted by a physician with experience of treating MPS as soon as possible after diagnosis.

This should include a full discussion regarding the disease pathology, progression, treatment options, and management. Ongoing information should be provided to optimise patient outcomes"

MPS, mucopolysaccharidosis Akyol MU et al. *Orphanet J Rare Dis*. 2019;14:137

Delay to diagnosis across MPS types

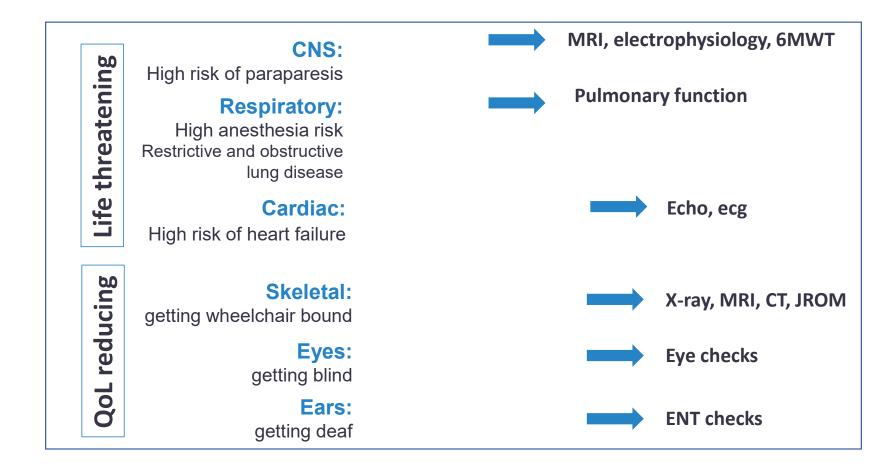


^aFindings from the systematic literature review; ^bFindings from the physician survey.

1. Mubarack F et al. Presented at the 13th International Congress of Inborn Errors of Metabolism: September 5–8, 2017, Rio de Janeiro, Brazil, 662;

2. Clarke L. et al. JIEMS. 2018;7:1–12.; 3. Clarke L et al. Presented at the 13th International Congress of Inborn Errors of Metabolism: September 5–8, 2017, Rio de Janeiro, Brazil, 649.

Recommendations cover five key areas of patient management


ENT, ear, nose, and throat; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplantation; MPS, mucopolysaccharidosis. Akyol MU et al. Orphanet J Rare Dis.2019;14:118; Akyol MU et al. Orphanet J Rare Dis. 2019;14:137.

Care by a MDT is critical to manage the multisystem manifestations of MPSIVA and MPS VI

The MDT should ideally including **metabolic specialists**, **surgeons**, **and allied healthcare professionals** (including, but not limited to, nurses, physiotherapists, occupational therapists, psychologists, speech pathologists and audiologists, as medically appropriate), who must all work together to manage the diverse range of disease manifestations of MPS IVA/MPSVI

MPSs – checking all affected organ systems

1. Presenter's own picture with permission of the patient, Wraith JE, Clarke JTR. In: Physician's Guide to the Treatment and Follow-up of Metabolic Diseases. 2006:195–203.

2. Scarpa et al. Orphanet Journal of Rare Diseases 2011, 6:72


Baseline and ongoing assessments are critical to monitor disease progression and treatment effect

"A comprehensive medical history and multi-system evaluation should be conducted within days of diagnosis to set a baseline for ongoing assessments and evaluate the physical and neurological manifestations of disease, functional ability, and disease burden"

"Ongoing and regular, multi-system monitoring and assessments are recommended to track the natural history of MPS IVA/MPS VI, monitor the impact of treatment, and assess the need for treatment interventions to manage the symptoms of MPS IVA and MPS VI"

"Timely interventions are recommended where clinically indicated by monitoring, to help avoid irreversible damage caused by the natural history of MPS IVA/MPS VI, and to manage the disease manifestations and maintain long-term QoL"

MPS, mucopolysaccharidosis; QoL, quality of life Akyol MU et al. Orphanet J Rare Dis. 2019;14:118

For optimal care: baseline assessments and follow up

Assessments should include:

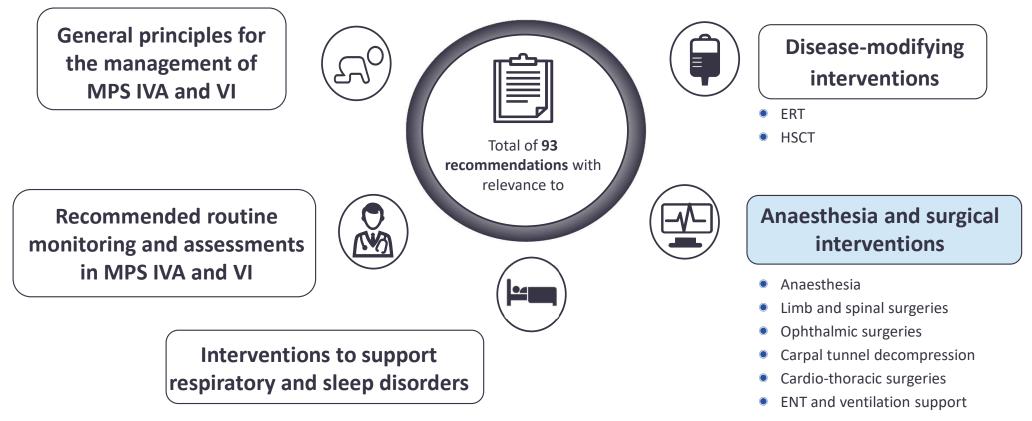
- Endurance testing (e.g. 6MWT)⁺
- Growth, including height and weight
- Total urinary GAG levels
- Respiratory function (if age-appropriate)
- Pain severity
- ADL (e.g. MPS-HAQ)
- QoL (e.g. EQ-5D-5L)
- Evaluation of upper and lower limb function
- Evaluation for possible cervical cord compression

Both baseline (prior to ERT initiation) and regular follow-up assessments are critical to measuring ERT efficacy and setting treatment expectations with each individual patient

[†]Adaptations such as a 25-foot walk test can be used for patients with limited mobility.6MWT, 6-minute walk test; ADL, activities of daily living; EQ-5D-5L, 5-level EQ-5D; ERT, enzyme replacement therapy; GAG, glycosaminoglycan; HAQ, health-assessment questionnaire; MPS, mucopolysaccharidosis; QoL, quality of life. Akyol MU et al. Orphanet J Rare Dis.2019;14:118; Akyol MU et al. Orphanet J Rare Dis.2019;14:118; Akyol MU et al. Orphanet J Rare Dis.2019;14:137.

Multi-system assessments should be conducted at diagnosis and regularly thereafter (1 of 2)

ASSESSMENT	AT DIAGNOSIS	AT EVERY CLINIC VISIT	EVERY 6 MONTHS	EVERY 12 MONTHS	EVERY 24–36 MONTHS
Physical examination ^a		\checkmark			
RADIOLOGY					
AP pelvis radiograph	\checkmark				
Standing or sitting plain radiography of cervical and thoracolumbar spine	\checkmark				✓ (or sooner ^b)
MRI: whole spine ^c	\checkmark			\checkmark	
MRI: brain	\checkmark				
ENDURANCE					
6-minute walk test ^d	\checkmark			\checkmark	
GROWTH					
Assessment of growth Should include measurement of height, weight, head circumference (≤3 years), and Tanner pubertal stage (until maturity)	\checkmark	√			
NEUROLOGY					
Neurological exam	\checkmark	\checkmark			
MPS VI: Clinical examination to evaluate CTS	\checkmark		\checkmark		


Akyol MU, Orphanet J Rare Dis. 2019 May 29;14(1) Orphanet J Rare Dis. 2019 Jun 13;14(1):137.

Multi-system assessments should be conducted at diagnosis and regularly thereafter (2 of 2)

ASSESSMENT	AT DIAGNOSIS	AT EVERY CLINIC VISIT	EVERY 6 MONTHS	EVERY 12 MONTHS	EVERY 24–36 MONTHS
CARDIOLOGY					
Cardiac evaluation ^e	\checkmark			\checkmark	
RESPIRATORY FUNCTION/SLEEP DISORDERS					
Spirometry ^f	\checkmark			✓ (in children)	✓ (in adults)
Overnight sleep study	\checkmark				\checkmark
ENT					
ENT evaluation ^g	\checkmark		✓ (in children)	✓ (in adults)	
Audiometric assessment	\checkmark			\checkmark	
OPHTHALMOLOGY					
Comprehensive ophthalmologic assessment ^h	\checkmark		\checkmark		
ORAL HEALTH					
Monitoring of dental development	\checkmark			\checkmark	
DISEASE BURDEN					
Assessment of PROs using questionnaires (EQ-5D-5L and MPS HAQ)	\checkmark			\checkmark	

Akyol MU, Orphanet J Rare Dis. 2019 May 29;14(1).

Recommendations cover five key areas of patient management

ENT, ear, nose, and throat; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplantation; MPS, mucopolysaccharidosis. Akyol MU et al. Orphanet J Rare Dis.2019;14:118; Akyol MU et al. Orphanet J Rare Dis. 2019;14:137.

Specific anaesthesiological challenges in MPS

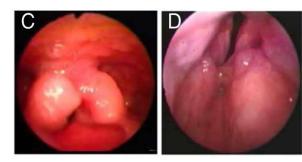
Weaning Airway swelling

higher peri-operative mortality a specialized center is needed

Difficult airways

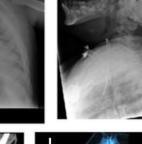
Dwarfism, short neck Large head, hypertelorism Thickened and less flexible epiglottis, narrowed airways, macroglossia Cervical spine flexibility Atlanto-axial instability

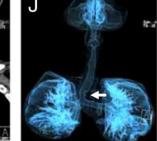
Limited cardio-respiratory resources

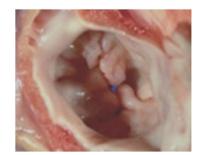

Haemodynamically significant heart changes, cardiomyopathy **Recurrent airway infections** Restrictive and obstructive lung disease

Reasons for high anesthesia risk

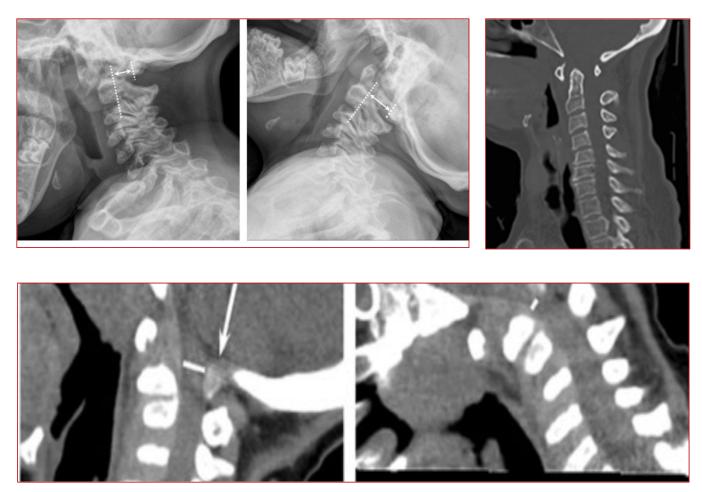
Restrictive and obstructive lung disease

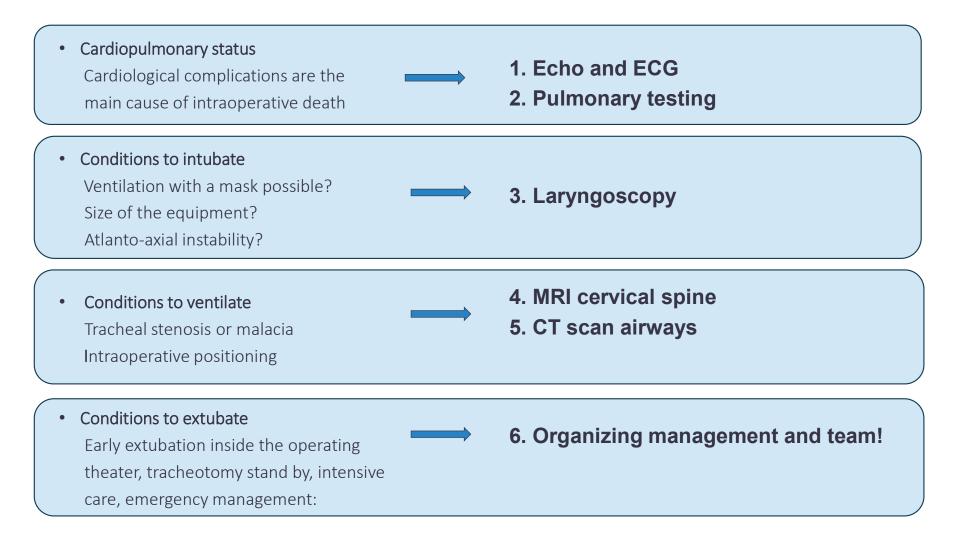

Heart valve stenosis/ insufficiency Atlantoaxial instability











Atlano-axial instability, mainly in MPS IVA

Adapted from Solanki GA, et al. Mol Genet Metab. 2016 Aug;118(4):310-8

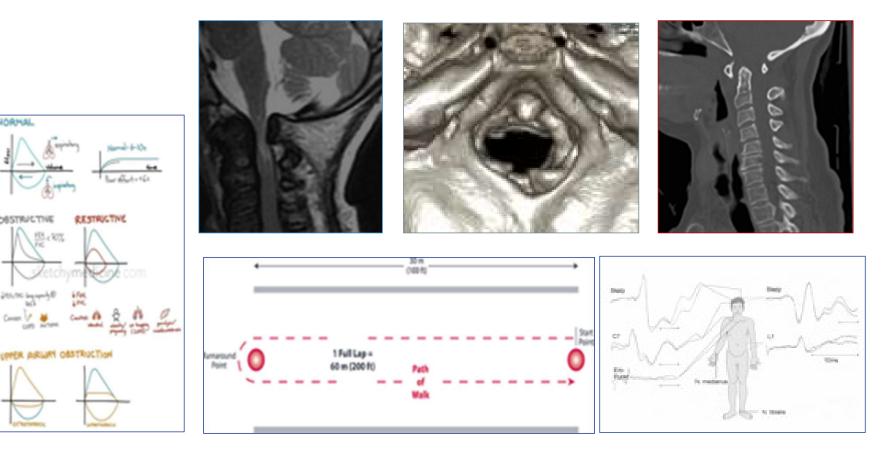
Preoperative evaluation and planning

Due to greater surgical risk, specific actions are required prior to anesthesia and surgery

Multidisciplinary team

- An anesthetist with experience in treating MPS patients should supervise pre-, peri-, and postoperative care
- Access to intensive care unit and support by an experienced team capable of performing tracheotomy if required

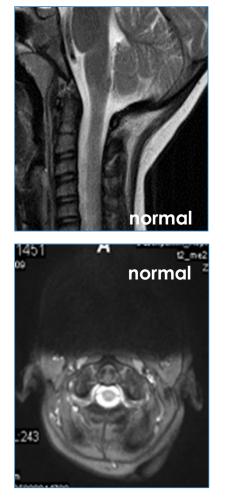
- extreme caution to avoid general anesthesia in a high-risk situation or during pregnancy
- ENT, respiratory, cardiac, and radiological assessments required prior to anesthesia
- Maintaining a neutral neck position is critical to avoid paralysis
 - Use of techniques strongly recommended e.g. LMA, intubation with video laryngoscope, or fiberoptic intubation

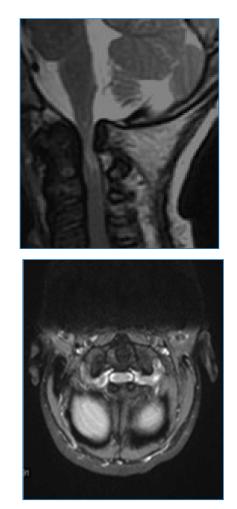

Life threatening disease complication in MPS I, (II), IVA and VI: craniocervical cord compression

- Neurological exam •
- MRI (flex/ex) ۰
- **Pulmonary function** ٠

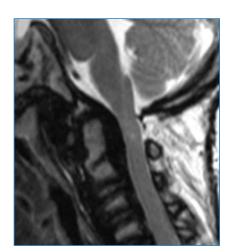
NORMAI

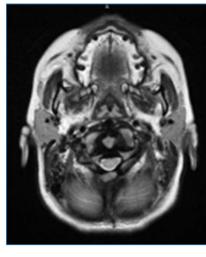
OBSTRUCTIVE


- 6 Minute Walk Test •
- 3D-CT ۰
- SEP •
- CSF flow studies •
- Polysomnography ۰

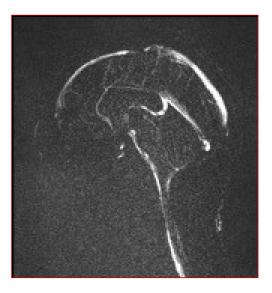

Own summary due to literature

https://sketchymedicine.com/2011/10/pulmonary-function-test-patterns/Kaur, Jaspreet & Malik, Manoj & Sharma, Parul & Sangwan, Sumedha & S, Kulandaivelan. (2017). Prevalence and Fitness of Diabetics in Hisar, Haryana, India. Romanian journal of diabetes, nutrition and metabolic diseases. 24. 10.1515/rjdnmd-2017-0015.


Results after decompression surgery (MPS VI)



Presenter's own picture with permission of the



Preoperative MRI

Postoperative MRI

Quality of life reducing disease complications: craniofacial, ENT, eye and teeth

- Coarse facial features (prominent brow, broad nose, full lips, large jowls)
- Macroglossia
- Deafness
- Recurrent ear infections
- Chronic rhinorrhoea
- Adenoids, hypertrophic tonsils
- Visual impairment
- Corneal clouding
- Glaucoma (MPS VI)
- Dental enamel defects

hearing aids

- ventilation tubes, antibiotics
 - Inhalation
- nsils adenoidectomy, tonsillotomie
 - glasses
 - corneal transplantation
 - medication, surgery
 - regular care and check up

This slide was provided by Prof. Lampe, any needed necessary approvals before sharing this data have been secured by the speaker https://earsurgeon.in/conditions/best-adenoids-doctor-in-hyderabad/

Quality of life reducing disease complications: skeleton and joints

physiotherapy, osteotomy, hip replacement

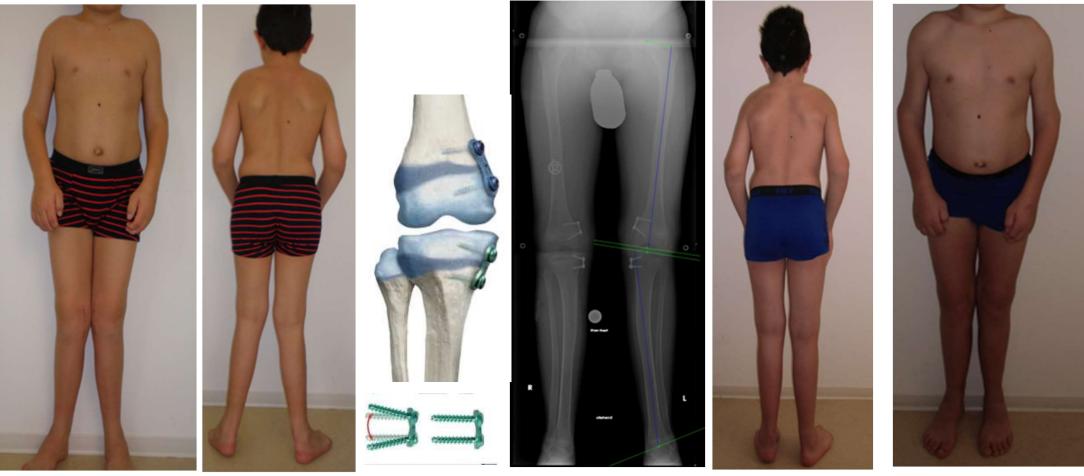
corsets, decompression surgery, stabilization

physiotherapy, orthosis

decompression surgery

hemiepiphysiodesis, orthosis

- Joint stiffness and contractures, pain
- knock knees
- Hip dysplasia
- Thorakolumbar kysphskoliosis
- MPS I, II, VI: Carpal tunnel syndrome
- Above average growth until age 3, then slowing of growth

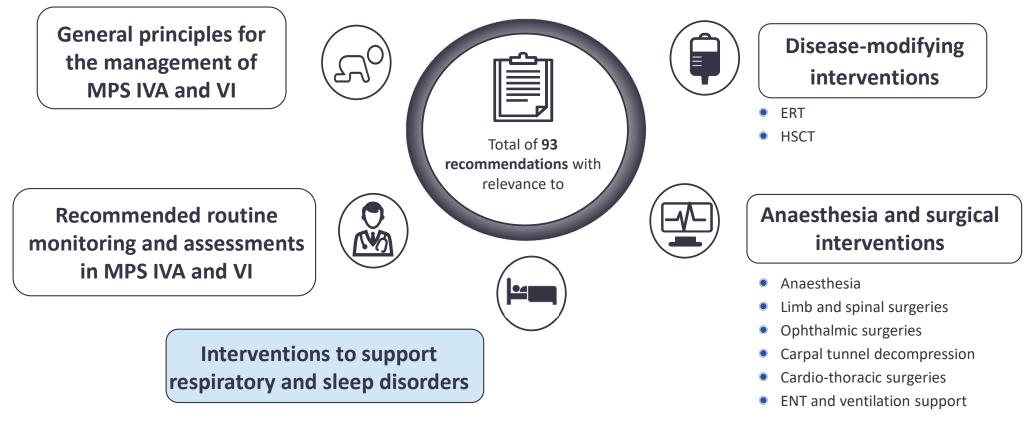


This slide was provided by Prof. Lampe, any needed necessary approvals before sharing this data have been secured by the speaker Burton BK, Giugliani R. Eur J Pediatr. 2012;171(4):631-639)

Quality of life reducing disease complication: operative treatment of genua valga: hemiepiphysiodesis

12 yrs., MPSII – prior surgery

1 years after surgery


Patients with limb and spinal manifestations may have the option for surgical intervention

Clinical manifestation					
	Limb surgeries				
Hip pain, reduced walking, and endurance related to hip disease, as	Hip reconstruction is not routinely indicated but may be considered in pediatric MPS VI/MPS IVA patients				
well as abnormal radiographic findings	Hip replacement can be considered in adult patients				
Genu valgum	Growth modulation is recommended as early as possible during the period of growth				
	Spinal surgeries				
Evidence of spinal cord compression ⁺	Decompression of the spinal cord is recommended				
Spinal instability	Spinal stabilization of the craniocervical junction with either cervical fusion or occipital-cervical fusion is recommended				
Progressive radiographic changes, intractable pain, and clinical deterioration as defined by gait, lung function, and changes in the degree of kyphosis	Correction of thoracolumbar kyphoscoliosis is recommended				

Surgical intervention may also be considered for manifestations of the hand, eye, heart, and ENT

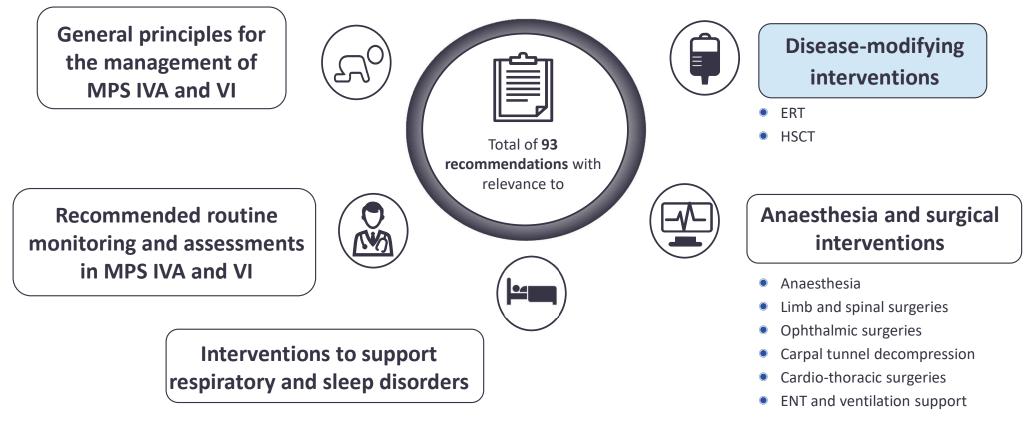
Surgery	Recommendation
Carpal tunnel decompression (MPSVI)	New guidance address trigger finger in patients with MPS VI A1 and A3 pulley release is recommended in MPS VI patients who display obvious trigger finger
Ophthalmic surgery	Corneal transplantation can be considered for both MPS VI and IVA patients, with significant visual loss attributed to corneal opacification
Cardiac surgery	Cardiac (aortic, mitral) valve replacement should be considered in patients with MPS IV/MPS VI who display symptomatic and severe valve stenosis or regurgitation
ENT surgery	Following diagnosis, tonsillectomy and/or adenoidectomy is recommended for MPS VI/IVA patients who experience recurrent otitis media, snoring, and/or OSA without waiting for disease progression

Recommendations cover five key areas of patient management

ENT, ear, nose, and throat; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplantation; MPS, mucopolysaccharidosis. Akyol MU et al. Orphanet J Rare Dis.2019;14:118; Akyol MU et al. Orphanet J Rare Dis. 2019;14:137.

Specific interventions are recommended to manage respiratory and sleep disorders

"CPAP therapy is recommended for patients with MPS VI/UVA who display the presence of OSA which persists after tonsillectomy and/or adenoidectomy"


"NIPPV therapy is recommended for patients with MPS VI/IVA who display nocturnal hypoventilation and are unresponsive to CPAP, or display daytime hypoventilation with increased PaCO₂ and/or serum HCO₃ levels"

"Oxygen supplementation is recommended for patients with MPS VI/IVA who exhibit sleep apnea with nocturnal hypoxemia, and who do not tolerate CPAP or NIPPV masks"

"Patients with MPS VI/IVA should be monitored for development of hypercapnia after starting therapy with measurement of $PaCO_2$ and/or serum HCO_3 levels"

CPAP, continuous positive airway pressure; MPS, mucopolysaccharidosis; OSA, obstructive sleep apnea; NIPPV, non-invasive positive pressure ventilation Akyol MU et al. Orphanet J Rare Dis. 2019;14:118

Recommendations cover five key areas of patient management

ENT, ear, nose, and throat; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplantation; MPS, mucopolysaccharidosis. Akyol MU et al. Orphanet J Rare Dis.2019;14:118; Akyol MU et al. Orphanet J Rare Dis.2019;14:137.

Treatment with enzyme replacement therapy should be started promptly after diagnosis and maintained long-term

Galsulfase in MPS VI

"Initiation of **long-term ERT** with galsulfase at a dose of 1 mg/kg/week by intravenous infusion is recommended in patients with MPS VI as soon as **possible after a confirmed diagnosis**"

"Galsulfase has been shown to improve endurance...and pulmonary function...which may, in part, be attributed to growth in young patients"

Elosulfase alfa in MPS IV A

"Initiation of long-term ERT with elosulfase alfa at a dose of 2 mg/kg/week through intravenous infusion is recommended in all patients with MPS IVA as soon as possible after a confirmed diagnosis"

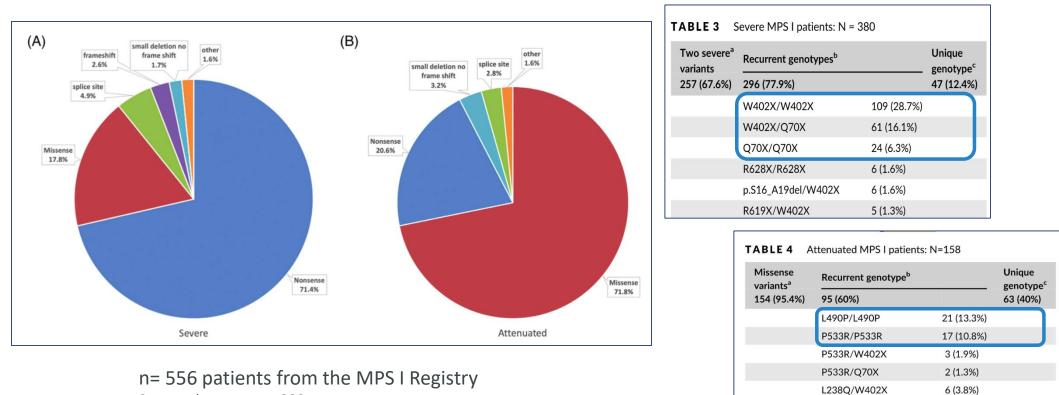
"The early initiation of ERT will likely change the course of disease in patients with MPS IVA;

additional studies needed to determine the long-term outcomes of patients

ERT, enzyme replacement therapy; MPS, mucopolysaccharidosis, Akyol MU et al. Orphanet J Rare Dis. 2019;14:118

Elosulfase alfa for MPS IVA and Galsulfase for MPS VI are currently the only licensed disease-specific treatments

Galsulfase in MPS VI


- The benefits of ERT initiation at an early age are welldemonstrated in multiple sibling-controlled studies of patients with MPS VI
- If initiated early, galsulfase may result in improvement in growth velocity, and may prevent the progression of cardiac valve abnormalities; comparative studies of patients who have not received ERT will be critical to further establish treatment effect
- Early initiation of long-term treatment with galsulfase is associated with a trend for improvement in spleen and liver size, facial dysmorphia, joint mobility and decreased pain; findings also suggest galsulfase may slow bone disease progression
- HSCT may be an option; it is important to consider the associated risks of morbidity and mortality and the procedure should only be performed by a MDT that is experienced with caring for MPS VI patients

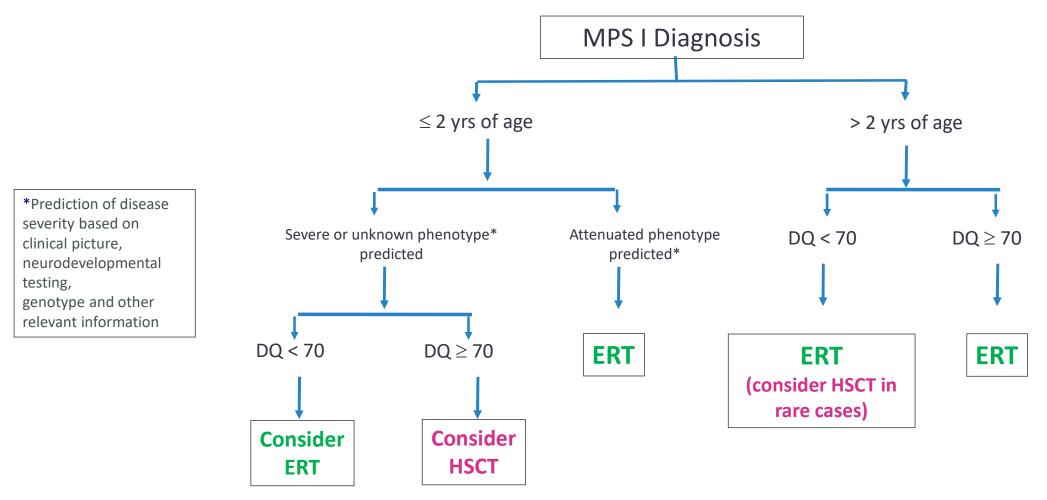
Elosulfase alfa in MPS IV A

- elosulfase alfa has been shown to improve endurance and exercise capacity, and in some patients, reduce pain
- Long-term treatment with elosulfase alfa is associated with partial recovery of functional abilities, and improvement in performance of ADL
- Early intervention with elosulfase alfa is associated with a trend towards improvement in growth.
 Additional studies will be critical to determining comprehensive long-term outcomes of patients who initiated ERT at an early age
- HSCT is not recommended for patients with MPS IVA

ADL, activities of daily living; ERT, enzyme replacement therapy; HSCT, hematopoietic stem cell transplantation

Genotype-Phenotype correlation in MPS I

Severe phenotype n=380


Attenuated phenotype n=158

Clarke, Lorne A et al. "Genotype-phenotype relationships in mucopolysaccharidosis type I (MPS I): Insights from the International MPS I Registry." Clinical genetics vol. 96,4 (2019): 281-289.

L238Q/Q70X

2 (1.3%)

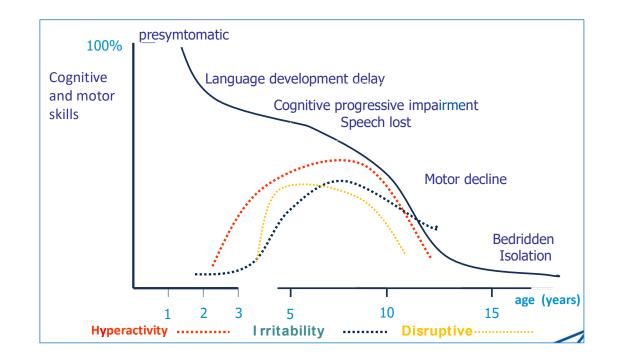
Recommendations for HSCT or ERT in MPS I

Muenzer et al Pediatrics 2009, 123: 19-29

	Initial Assessments	Every 6 mo	Every 12 mo	Every Other Year		Initial Assessments	Every 6 mo	Every 12 mo	Every Other Year
General					Cardiac				
Demographic characteristics	Х				Echocardiography	Х			Х
Patient diagnosis	Х				Electrocardiography	X			X
Medical history	Х	Х			Musculoskeletal	Λ			~
Physical examination	Х	Х				V			V
General appearance	Х	Х			Skeletal survey with	Х			Х
Clinical assessments					radiographs ^a				
Neurologic/central nervous					Gastrointestinal				
system					Spleen volume ^b	Х			Xc
Computed tomographic or	Х			Х	Liver volume ^b	Х			Хс
MRI scans of brain					Vital signs and laboratory tests				
MRI scans of spine	Х			Х	Height and weight	Х	Х		
Median nerve conduction	Х			Х	Head circumference ^a	Х	Х		
velocity					Blood pressure	Х	Х		
Cognitive testing (DQ/IQ)	Х		Х		Enzyme activity level	Х			
Auditory					Urinary glycosaminoglycan level	Х	Хc		
Audiometry	Х		Х		Urinalysis	X	Xc		
Ophthalmologic					Functional outcome measurements	,			
Visual acuity	Х		Х		Mucopolysaccharidosis Health	Х		Х	
Retinal examination	Х		Х		Assessment Questionnaire	Λ		~	
Corneal examination	Х		Х		-				
Respiratory					or other tools exploring				
Forced vital capacity/forced expiratory volume	Х	Х			functional ability and quality of life ^d				
Sleep study	Х		Х						

Joseph Muenzer, et.a.l, Mucopolysaccharidosis I: Management and Treatment Guidelines Pediatrics 2009;123;19

Scarpa *et al*. Orphanet Journal of Rare Diseases 2011, **6**:72 http://www.ojrd.com/content/6/1/72


REVIEW

Open Access

Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease

What do we know about cognitive ability in MPS II?

- Approximately 2/3 of patients with MPS II will slow and then stop developing cognitive skills. They will then gradually lose the skills they have developed
- Some children begin to slow in ability at age 2 and others at age 5 and any time in between
 - This variability makes it difficult to predict the disease course
- Cognitive ability can be measured and can be accomplished for both clinical trials and patient management, but there are challenges^a

Holt JB et al. Pediatr 2011;127:e1258–65; 2. Ziegler R and Shapiro E. Cambridge University Press; 2010:427–483.

Additional Assessments in MPS II (neuronopathic)

Nervous system	
Developmental delay	Medical history (achievement of developmental milestones),* neurobehavioral assessment/cognitive testing,* measurement of intelligence quotient†
Progressive mental impairment (cognitive dysfunction)	Neurobehavioral assessment/cognitive testing,* measurement of intelligence quotient†
Gait disturbance	Evaluation of sitting and standing posture and walking ability (6-minute walk test),* MRI of the brain and cranio-cervical junction†
Seizures	MRI of the brain and cranio-cervical junction*, electroencephalography†
Behavioural disturbances (over activity, obstinacy, aggression)	Neurobehavioral assessment/cognitive testing,* measurement of intelligence quotient†
Carpal tunnel syndrome	Electrophysiological testing of nerve conduction velocity†

Scarpa M, Almássy Z, Beck M, Bodamer O, Bruce IA, De Meirleir L, Guffon N, Guillén-Navarro E, Hensman P, Jones S, Kamin W, Kampmann C, Lampe C, Lavery CA, Teles EL, Link B, Lund AM, Malm G, Pitz S, Rothera M, Stewart C, Tylki-Szymańska A, van der Ploeg A, Walker R, Zeman J, Wraith JE; Hunter Syndrome Europena Expert Council. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011 Nov 7;6:72.

Sanfilippo syndrome: consensus guidelines for clinical care

- 64 clinicians representing 21 specialty areas (from 14 countries)
 - 59% (n=38) had cared for \geq 10 patients with Sanfilippo syndrome
 - 8% (n=18) had cared for >30 patients with Sanfilippo syndrome
- Consensus (defined as ≥75% responses of 'Strongly Agree' or 'Agree')
- 173 (94%) of 185 statements reached consensus
- => 178 final statements (>75% agreement)

Diagnosis in Sanfilippo Syndrome

• Early diagnosis of Sanfilippo syndrome is critical to ensure:

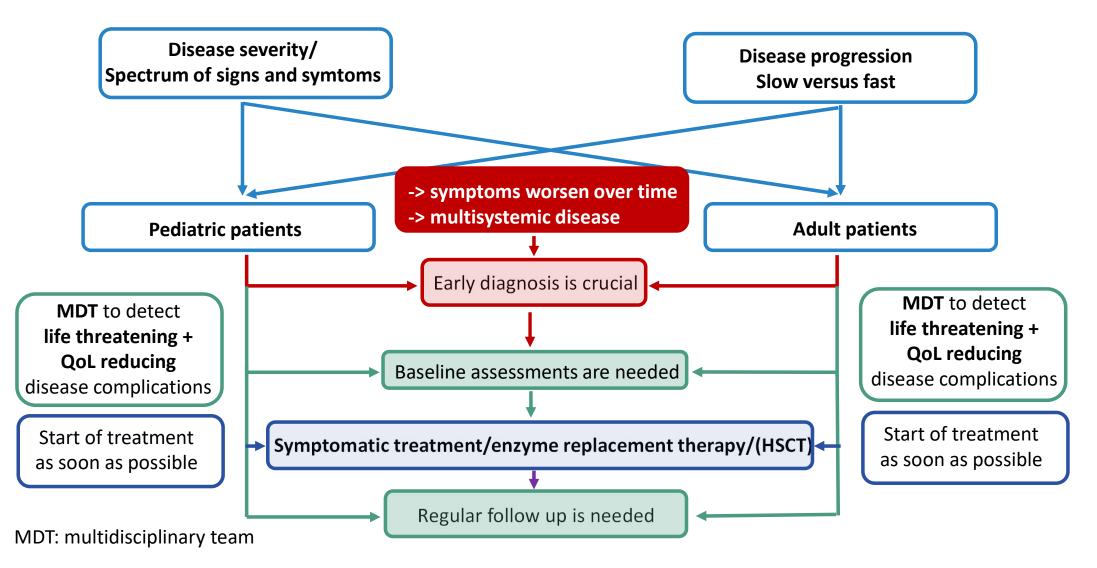
- optimal care for patients and their families by enabling access to specific supportive interventions to maximize peak abilities
- slow rate of decline
- improve quality of life
- accessing appropriate education and developmental therapies
- participate in clinical trials and/or receive treatments as they emerge
- timely genetic counseling of affected families

• Reasons for diagnostic delay (> 2 years)

- lack of disease awareness
- the absence or subtle presentation of somatic symptoms
- neurological symptoms that can be mistakenly considered as idiopathic developmental delays and behavioral challenges

Differential diagnosis:

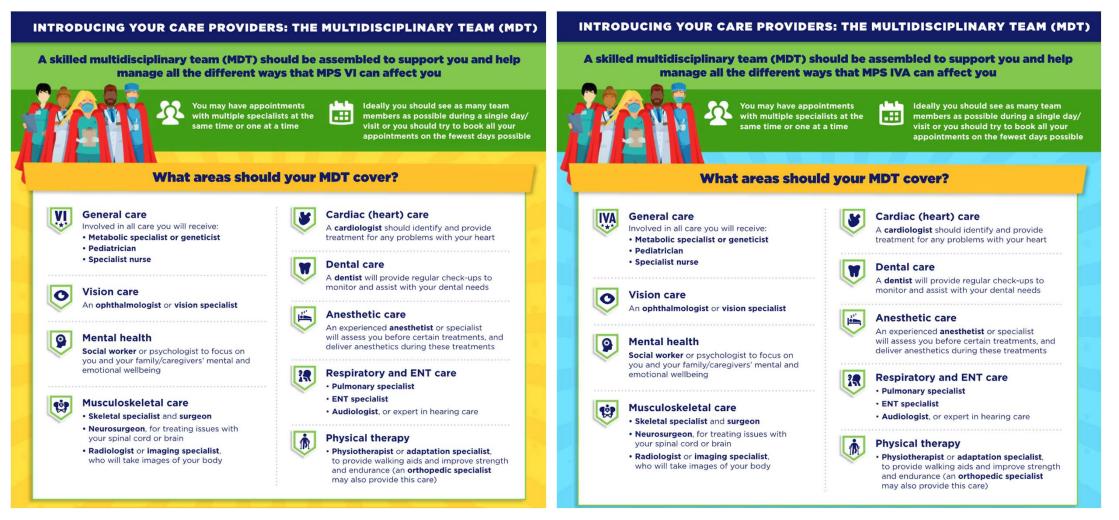
- idiopathic developmental delay
- attention deficit
- hyperactivity disorder (ADHD)
- autism


Multidisciplinary approach in Sanfilippo syndrome

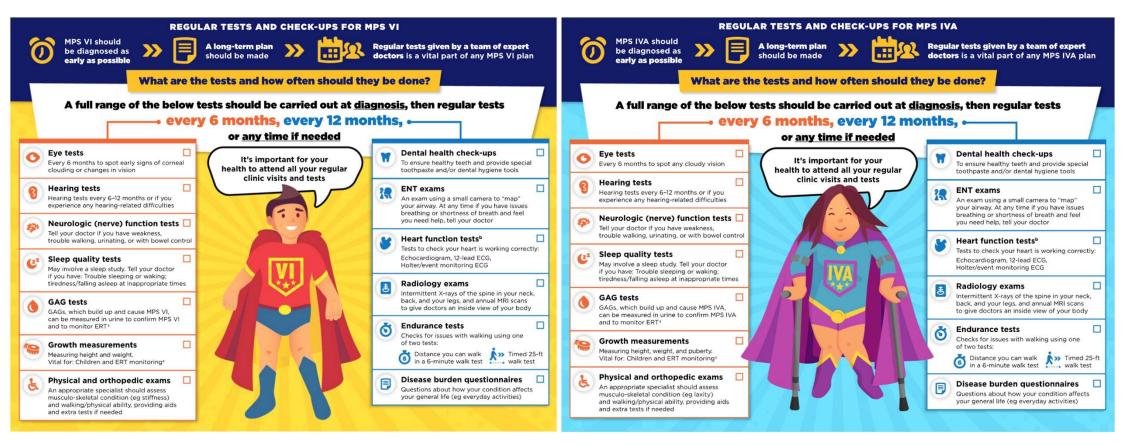
NeurodeSeizures	velopment/neurological	Cardiac	Nutrition and gastroenter	Ophthalmology Dental	Aliway/respiratory Surgery	Seizures BNT	Area of assessment Neurodevelopment/ neurological	
Cardiac	Dental Nutrition and gastroenterology	Ophthalmology	Surgery	Airway/respiratory	ENT	Seizures	Neurodevelopment/ neurological	Area of assessment
•Echocardiogram •ECG	 Assessment of eating abilities Electrolytes and liver 	•Full ophthalmologic		•Vital signs •Respiratory examinat	ENT examination Audiologic testing	 Sleep Seizure activity Movement (walking/ Behavioral symptom High-resolution MRI 	 Cognitive function (fi Adaptive behavior sk Adaptive behavior skills Fine motor skills Tone 	At diagnosis
 Hematolo Occupation Speech the Growth Puberty Family summers 	ogy onal therapy herapy	growth) • Abdominal imaging (triggered by persistent urrexplained pain, distress or agitation) • Echocardiogram (at least 12-monthly if abnormalities on initial or subsequent assessments) • Hotter monitoring (triggered by abnormalECG)	ed pan, distress or agitation) • Monitor for gastroesophageal reflux (triggered by ing and swallowing increased behavioral distress, steep disturbance, and/or other dinical signs) • Det assessment (triggered by weight loss or poor	assessment, cardiology review, respiratory review, hematology review, neurologic review, pallative care, and nursing review - Full ophthalmologic evaluation (triggered by persistent unexplained pain, distress or agitation, falls) - Electroretinogram (triggered by persistent unexplained retirropathy) - Dental exam (triggered by persistent unexplained	• All least on futurity in certured in early gross or orus media with efficient • Flexible endoscopy prior to general anesthesia: • Triggered by suspicion of airway obstruction • Skeep evaluation (friggered by skeep distructionce) • Medical workup (triggered by skeep distructance, recurrent pneumonia, impaired secretion management) • Pre-operative assessment: an esthetic review, airway	 EEG (triggered by suspected secure activity, see the secure management section) ENT examination and audiclogic testing; Triggered by recurrent oritis media or suspected changes in hearing 	al examplification of the second strain of the seco	

Key evaluations for patients in pain, distress, or with behavioral changes of undetermined etiology

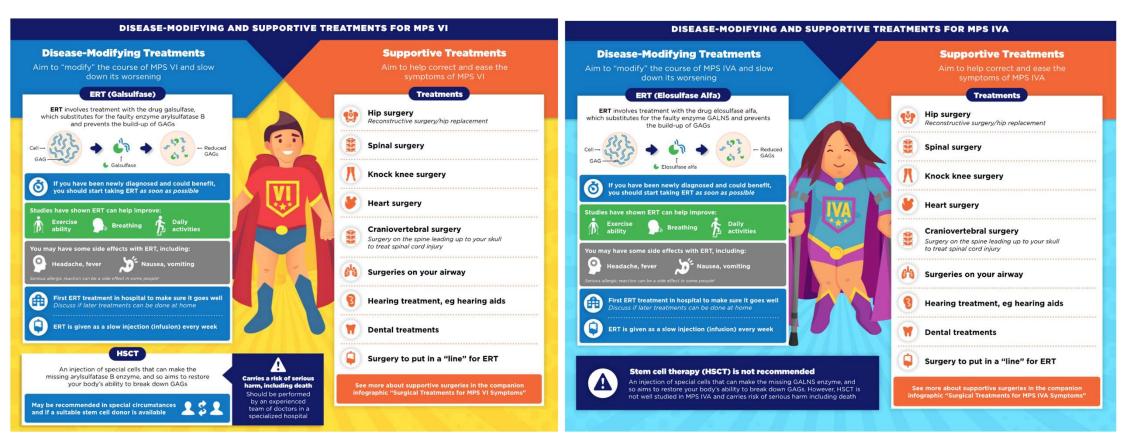
Area of assessment	Evaluations
Neurodevelopment/ neurological	High-resolution MRI: assessing for causes of headaches, signs of raised intracranial pressure and/or other inter- mittent or acute abnormalities that could be a cause of pain, distress, or behavioral changes
ENT	ENT examination: assess for potential causes of unexplained pain, including infection
Ophthalmology	Full ophthalmologic evaluation: assess for potential causes of unexplained pain, distress, agitation, or falls
Dental	Dental exam: assess for potential causes of unexplained pain, distress, or agitation
Nutrition and gastroenterology	Assess for gastroesophageal reflux as potential cause of behavioral distress and/or sleep disturbance Abdominal imaging: assess for potential causes of unexplained pain, distress, or agitation
Orthopedic	Physical exam and X-rays: assess for potential causes of unexplained signs of discomfort or pain, particularly hip disease
Pain	Standardized pain assessments Caregiver proxy assessments
Laboratory investigations	Complete blood count, electrolytes, serum chemistries, and urine analysis
Detailed physical exam and history	Exam and history to include areas described above, as well as skin and genitourinary evaluation (including assessment for urinary retention)*


Summary MPS – disease with many variables

Patient-friendly medical communications: adaptation of the 2019 recommendations for the management of MPS VI and MPS IVA


Bruce IA et al. Addressing the need for patient-friendly medical communications: adaptation of the 2019 recommendations for the management of MPS VI and MPS IVA **Orphanet J Rare Dis. 2022 Mar 2;17(1):91.**

Multidisciplinary team (MDT)


Bruce IA, Ezgü FS, Kampmann C, Kenis V, Mackenzie W, Stevens B, Walker R, Hendriksz C. Addressing the need for patient-friendly medical communications: adaptation of the 2019 recommendations for the management of MPS VI and MPS IVA. Orphanet J Rare Dis. 2022 Mar 2;17(1):91.

Regular tests and check ups

Bruce IA, Ezgü FS, Kampmann C, Kenis V, Mackenzie W, Stevens B, Walker R, Hendriksz C. Addressing the need for patient-friendly medical communications: adaptation of the 2019 recommendations for the management of MPS IVA. Orphanet J Rare Dis. 2022 Mar 2;17(1):91.

Disease modifying and supportive treatments

Bruce IA, Ezgü FS, Kampmann C, Kenis V, Mackenzie W, Stevens B, Walker R, Hendriksz C. Addressing the need for patient-friendly medical communications: adaptation of the 2019 recommendations for the management of MPS VI and MPS IVA. Orphanet J Rare Dis. 2022 Mar 2;17(1):91.

Surgical treatments for MPS VI/MPS IVA symptoms

Bruce IA, Ezgü FS, Kampmann C, Kenis V, Mackenzie W, Stevens B, Walker R, Hendriksz C. Addressing the need for patient-friendly medical communications: adaptation of the 2019 recommendations for the management of MPS VI and MPS IVA. Orphanet J Rare Dis. 2022 Mar 2;17(1):91.

General anesthetics, ENT and respiratory care

CT and MRI scans if you

cannot lie still

GENERAL ANESTHETICS (GAS) IN MPS VI

People with MPS VI, like you, will likely need various surgeries and hospital procedures as part of their treatment. These can include:

Surgeries on ×. your skeleton

zzz

0

For these treatments you may be given a general anesthetic (GA), gases, and/or drugs that keep you asleep and pain free, and a tube placed in your windpipe to help you breathe

Remember: Specialist care needs a specialist center

GAs can pose serious risks in people with MPS VI, but these can be minimized if the correct care is given at every stage by a team of expert doctors

Before surgery

A full range of tests should be done before any surgery to highlight potential problems and allow your anesthetist to plan the GA

Heart

surgery

During surgery

F

30 Monitoring

24

Preventing breathing issues

Protecting your spine

Serious risks during GA include difficulties keeping the airway open at the start and end (as you go to sleep and waking up) and inserting the breathing tube into the windpipe at the start al circumstances you may receive a type of anesthetic called an "epidural" which requires extreme caution

A

After surgery

and how well you recover - Steroids may be given by your anesthetist if there is a risk of your airway swelling - Your expert team should be there to support you until you leave hospital

ENT AND RESPIRATORY CARE FOR MPS VI

Treatments to help with your sleeping

Sleep study If you feel tired, aren't getting enough sleep, are falling asleep inappropriately, or even have bad breath, your doctor may recommend an overnight sleep study to help identify any issues Constant Positive Airway Pressure (CPAP) therapy A device with a mask you wear during sleeping which provides air at increased pressure to hold open your airway and prevent blockages Non-Invasive Positive Pressure Ventilation (NIPPV) Another option if CPAP is not working for you, Ō which works in a similar way Supplemental oxygen may be prescribed after CPAP or NIPPV if you are still not getting as

.6 much oxygen as you need during sleep When receiving night-time oxygen, you should be monitored for side effects such as shortness of breath in the day

Vaccinations

10 mm

You should receive a regular flu vaccine and vaccines for other diseases that can seriously worsen vour breathing

Tonsillectomy and adenoidectomy Removal of your tonsils or adenoids to open

airways and improve your breathing

Ventilation tube (grommet) insertion 2 Insertion of a tube (grommet) into your ear and through your eardrum to prevent glue ear

and reduce your risk of ear infections

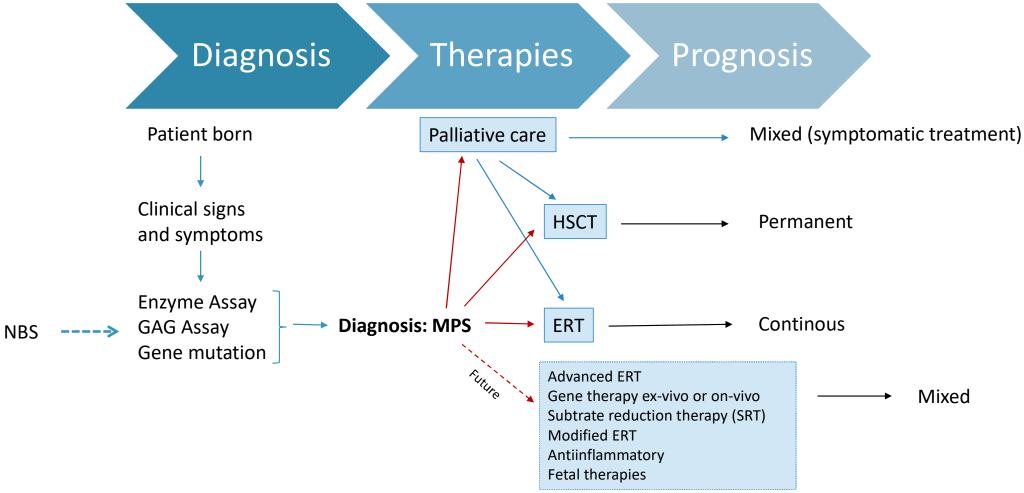
Grommets are temporary and may not be the best way to manage hearing loss due to glue ear over longer periods

Surgical treatments

A hearing aid amplifies the sound picked up by your ears and provides long-term management for loss of hearing due to glue ear In special cases, surgery to insert a bone-anchored or cochlear hearing implant may be suggested

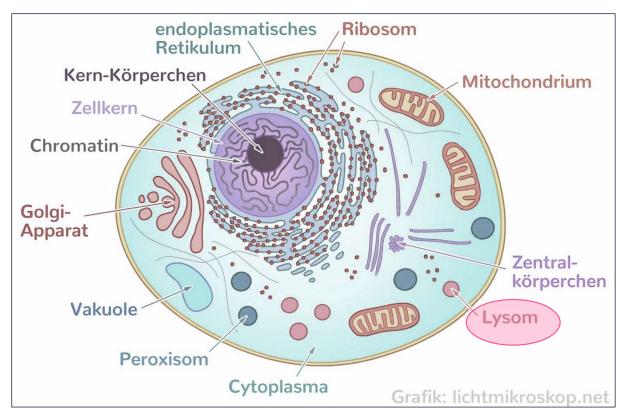
59

Bruce IA, Ezgü FS, Kampmann C, Kenis V, Mackenzie W, Stevens B, Walker R, Hendriksz C. Addressing the need for patient-friendly medical communications: adaptation of the 2019 recommendations for the management of MPS IVA. Orphanet J Rare Dis. 2022 Mar 2;17(1):91.


Summary

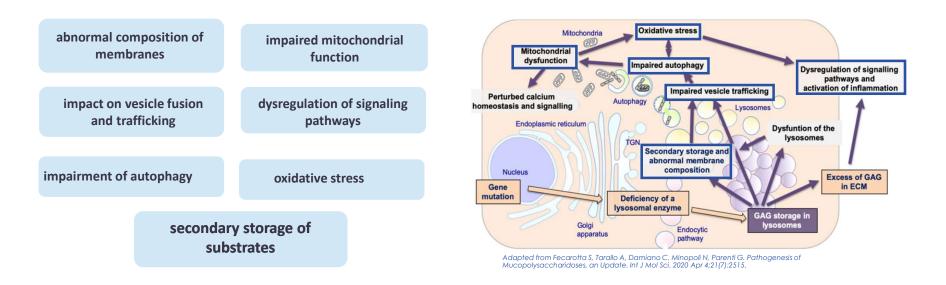
A multidisciplinary team is needed

- Optimal treatment starts with early diagnosis
- It is a combination of medical care, psychological, legal, and psychosocial care
- For medical treatment, regular follow up assessemts and symptomatic treatment is essential
 - life threatening disease complications
 - quality of life reducing disease complications
- Baseline assessments should be performed immediately after diagnosis
- enzyme replacement therapy is available in many countries for all MPSs except MPS III, IVB and IX
- Long term ERT should be started as soon as possible
- HSCT is the standard treatment only in MPS I H < 2.5 years of age
- There is a need of more/new guidelines (covering the different disease severity and age of patients)
- An example for good guidelines are the recommendations for MPS IVA and MPS VI)
- European guidelines for MPS II and international for alpha-mannosidosis are in progress


Current and new treatments of MPS patients

Current and future management of MPS disorders

Stapleton M,. Critical review of current MPS guidelines and management. Mol Genet Metab. 2019 Mar;126(3):238-245.


Lysosomes, Recycling stations of the cell

- Lysosomes are cell organelles (spherical vesicles)
- They contain many different digestive enzymes with which they break down foreign substances or endogenous substances
- = Recycling station of the cell
- The enzymes only achieve high activity in an acidic environment
- This ensures that enzymes that enter the cell from damaged lysosomes do not break down important cellular components.

MPS Pathophysiology

- Gene mutation => deficiency of a lysosomal enzyme => storage of glycosaminoglycans in lysosomes.
- MPS pathophysiology is the result of a complex cascade of secondary events that lead to dysfunction of several cellular processes and pathways:

Fecarotta S, Tarallo A, Damiano C, Minopoli N, Parenti G. Pathogenesis of Mucopolysaccharidoses, an Update. Int J Mol Sci. 2020 Apr 4;21(7):2515.

History and treatment in MPS

1881 first described LSD (Tay-Sachs)1955 Discovery of the lysosome1963 An enzyme deficiency is described as the cause (alfa-glucosidase in Pompe's disease)1968 Idea for enzyme replacement therapy (cross correction)

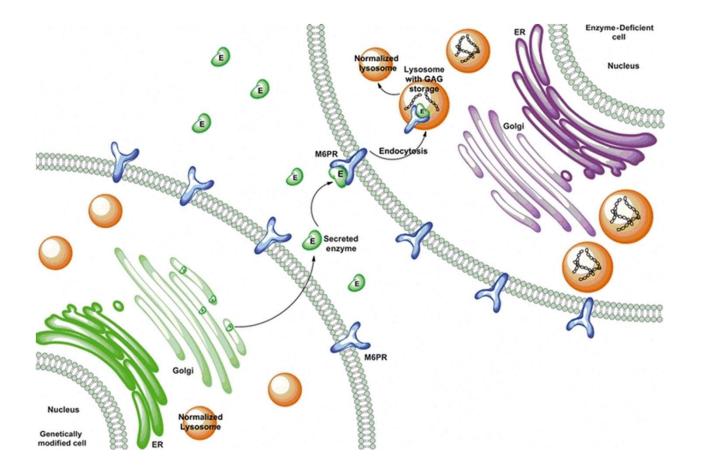
19981 first BMT in MPS I Hurler

1990 first enzyme replacement therapy available (M. Gaucher)

1997 first human ERT trial for MPS began

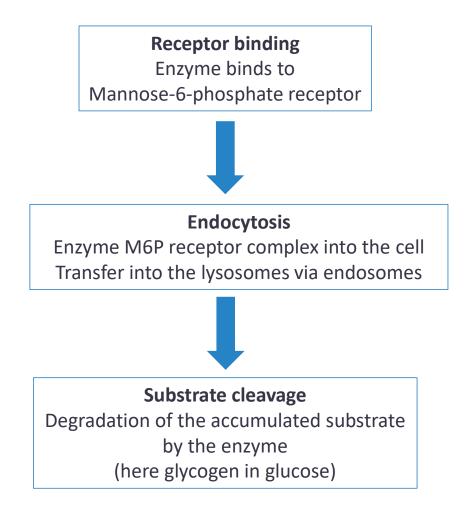
(10 patients, aged 15-22, were treated with recombinant a-L-iduronidase, and outcomes were measured over one year: significant improvement in peripheral (non-CNS) systemic symptoms: improvements in mobility, increases in linear growth velocity, reductions in liver volume, and reduced urine glycosaminoglycans)

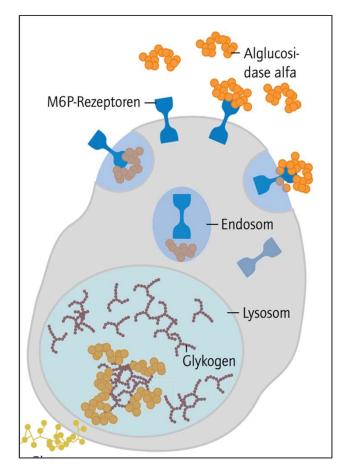
Approvals for enzyme replacement therapies in MPS:


2003 MPS I 2005 MPS VI 2006 MPS II 2014 MPS IV A 2017 MPS VII

By now: no treatment for MPS III (A-D), MPS IVB, and MPS IX available

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.


Enzyme replacement therapy


Principle of ERT: Correction factor

Eine Zelle gibt der anderen ihr funktionierendes Enzym ab und "heilt" die Zelle

Enzyme replacement therapy using the example of alglucosidase alfa (M. Pompe)

Current treatment options for MPS- enzyme replacement therapy

1	MPS	MS				I III IIII	MPS VI
Enzyme	Aloha-L-	lduronidate 2 sulfatase (III S	lfatase (ILS)			_	×
deficiency	iduronidase					; cetylgalactosamine-	acetylgalactosamine-
(gene)	(DUA)					(-suphatase (GALNS)	4-sulphatase (ARSB)
	Laronidase	Recombinant	Recombinant	Recombinint	Recombinant	ecombinant	Galsulphase
		idursulphase	idurona :e-2-	idursulphaxe-	idursulphase-	(losulphase-alpha	
			sulfatase	beta	beta		
I	Aldurazyme®,	Elaprase0,	IZCARGIV®, JCR	Hunterase® W.	Hunterase®	Vimizin@, Bioklarin	Naglazyme®,
	Genzyme.	Takeda.	Pharma	CANbridge	101, GC		juliann -
					Pharma,		
	Available since	Available since	Availab e since	Available ince	Available since	Available since 2014.	Available since 2005.
	2003.	2006	2021.	2012. App oved	2021. Approved		
				in Republic of Korea ^a	in Japan,		
Josage	0.50 mg/kg,	0.5 mg/kg,	2.0 mg/ kg/	63/ Jgm 5.0	/By/Bur 510	i mg/kg, once a	mg/kg, once a
	once a week.	once a week.	dose, o ice	dose, once a	dose ICV, even	l'eek.	Week,
	Delivered in 3	Delivered over	every 2 weeks.	week	4 weeks	l elivered over 4 h.	Delivered over 4 h.
	4 }	3h, can be					
1		shortened to					
		1hifno					
		reactions.					

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17. c

Pros and cons of common ERT

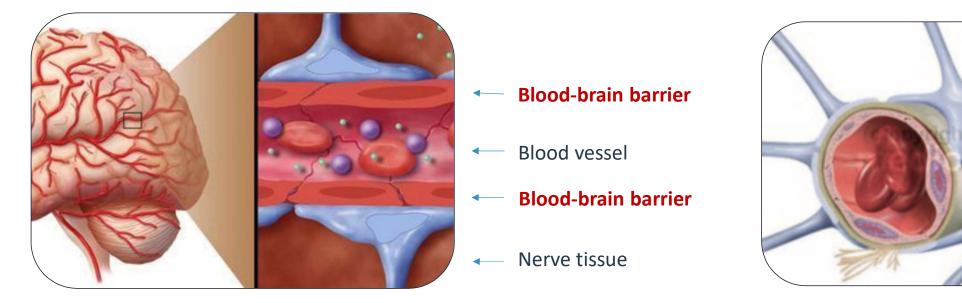
pros	cons	
Short half life in circulation	Life long therapy	
Quick binding to M6P receptors	Weekly or biweekly i.v. infusions 3-5 h	
Good penetration of liver, spleen, kidney	Less penetrating bone, cartilage , ocular tissues	
-	Not crossing BBB	Need of advanced
Home treatment possible	Has to be started in hospital setting	therapies
Generally well tolerated	Can cause immune reactions	

Outcome ERT: improvements in endurance, pulmonary function, joint mobility

70% of MPS patients have cns involvement

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.

Routes of enzyme replacement administration


Intrathecal/intracerebroventicular Intravenous crossing the bbb MPSII: exogenous enzyme is fused to an Intrathecal Idursulfase: antibody or peptide that binds to an Phase II/III studies- did mot met primary endpoint endothelial receptor, which facilitates its transfer across the bbb Intracerebroventricular Idursulfase beta: Phase I/II- approval in Japan MPS I and II: Bind the insulin receptor- no efficacy MPSIIIA: demonstrated Intrathecal rhHNS – did not met the primary endpoint MPSII: MPS IIIB: Bind the transferrin receptor Intracerebroventricular ERT for MPS IIIB, did not met Phase I/II studies underway (2) primary endpoint Phase II/III study in US and Europe Approved in Japan MPSI: Intrathecal after HSCT- ongoing

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.

Advanced enzyme replacement therapy

The Blood-Brain Barrier

600 km – includes the system of blood vessels that run through the brain

Tasks:

- safe functioning of the central nervous system
- Supply of nutrients
- Isolation from foreign substances (including medicines), toxic metabolites and pathogens
- Protection of brain cells from fluctuating concentrations of hormones and messenger substances, changes in the pH of the blood

https://www.stuttgarter-zeitung.de/inhalt.medizin-die-huerde-im-kopf-ueberwinden.c381d023-03f7-4ad9-a6ad-1a05547b9e62.html and the state of the st

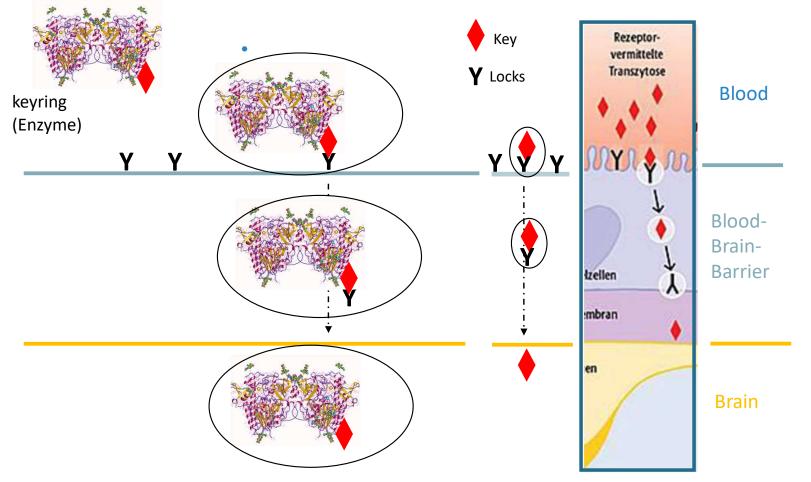
Parazellulärer Adsorptive Efflux-Transporter-Rezeptor-SIC Passive Transport Transzytose protein vermittelte Diffusion pumpe Transzytose 0 0 Tight 0 Junction JUUU Endothelzellen Basalmembran 0 Astrozyten Gehim CRAFIK

Transport routes through the blood-brain barrier

1. passive Diffusion: Passing through directly

2. Paracellular transport Transport between the cells

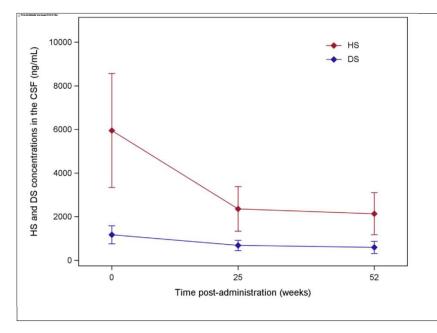
3. Transport proteins Like a taxi


4. Rezeptormediated transcytosis

5. Adsorptive Transcytosis electrostatic interactions to pass through

6. Effux-Pump Aktive transport

https://www.pharmazeutische-zeitung.de/ausgabe-282018/wie-arzneistoffe-die-barriere-ueberwinden/


Advanced ERT: Receptor-mediated transport through the blood-brain barrier

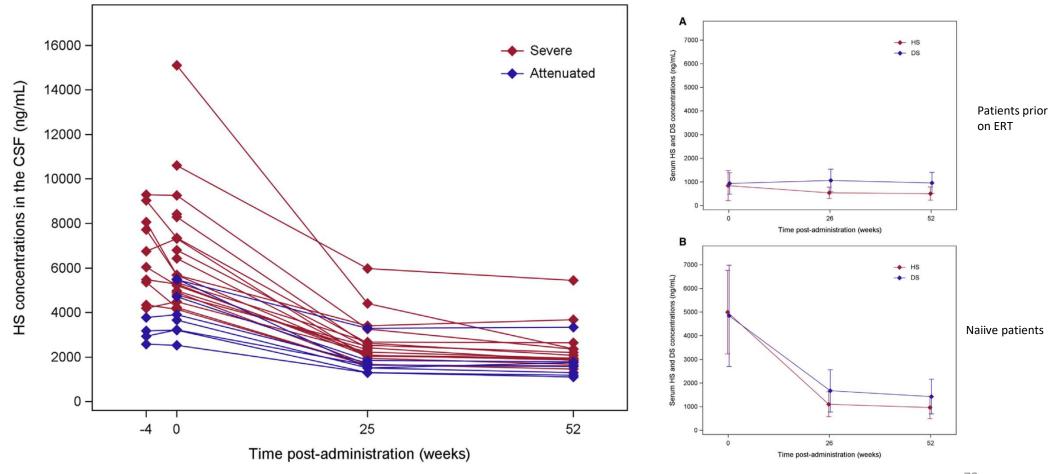
https://www.pharmazeutische-zeitung.de/ausgabe-282018/wie-arzneistoffe-die-barriere-ueberwinden/

Exogenous enzyme replacement therapy (JCR) phase II/III in MPS II

- Crossing bbb: transcytosis via transferrin receptors (Trojan horse)
- Multicenter, single arm phase II/III study, n= 28, 2mg/kg pabinafusp over 52 weeks
- Primary endpoint: heparan sulfate in csf
- Secondary endpoints: neurocognitive development, heparan and dermatan in plasma

- 53% adverse events and reactions (mild/moderate)
- Significant decrease in HS
- Positive neurocognitive development in 21/28 patients
- Reduced liver and spleen volume

Ongoing phase III study in US and EU Ongoing phase I/II study from Denali in US and EU


Okuyama T, Eto Y, Sakai N, Nakamura K, Yamamoto T, Yamaoka M, Ikeda T, So S, Tanizawa K, Sonoda H, Sato Y. A Phase 2/3 Trial of Pabinafusp Alfa, IDS Fused with Anti-Human Transferrin Receptor Antibody, Targeting Neurodegeneration in MPS-II. Mol Ther. 2021 Feb 3;29(2):671-679.

Patients demographics and clinical characteristics

		Prior E	nzyme Replacemer	nt Therapy wit	th Idursulfase				
		None		Adminis	Administered				
Characteristics		N (%)		N (%)		N (%)		_	
Number of subjects		3		25		28			
	0 to 3 years old	2	(66.7)	3	(12.0)	5	(17.9)	_	
	4 to 7 years old	1	(33.3)	8	(32.0)	9	(32.1)	-	
Age (years)	8 to 19 years old	0	(0.0)	13	(52.0)	13	(46.4)	46.4%: 8-19 yrs	
	20 years and older	0	(0.0)	1	(4.0)	1	(3.6)		
	all	3.0 ± 2.0		9.2 ± 5.5		8.6 ± 5.6	5		
Weight (kg)		17.33 ± 4.12		32.41 ± 14.51		30.79 ± 14.53			
Ethnicity	Asian	3	(100.0)	25	(100.0)	28	(100.0)		
Duration of ERT (days)				$2,077.2 \pm 1,476.1$		2,077.2 ± 1,476.1			
Idursulfase-related infusion associated reaction	no		(-)	11	(44.0)	11	(44.0)		
infusion associated reaction	yes	-	(-)	14	(56.0)	14	(56.0)	56%: IRR	
Complications	no	2	(66.7)	9	(36.0)	11	(39.3)		
Complications	yes	1	(33.3)	16	(64.0)	17	(60.7)		
MPS II-related medical history	no	1	(33.3)	6	(24.0)	7	(25.0)	_	
WI 5 II-related medical history	yes	2	(66.7)	19	(76.0)	21	(75.0)		
MPS II-related neurocognitive impairment	no	0	(0.0)	8	(32.0)		(28.6)	_	
mon react neurocognitive impairment	yes	3	(100.0)	17	(68.0)	20	(71.4)	71.4%: neurocognitive	
Disease phenotype	severe	3	(100.0)	17	(68.0)	20	(71.4)	involvement	
Discuse phenotype	attenuated	0	(0.0)	8	(32.0)	8	(28.6)	77	

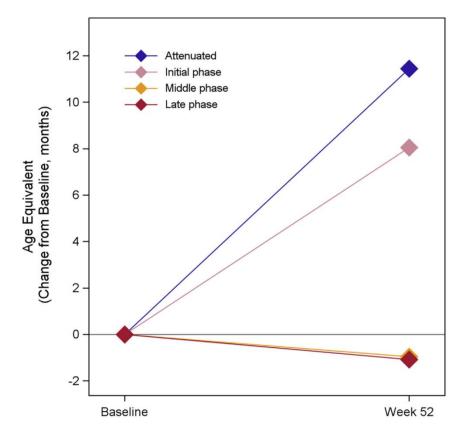
Okuyama T, Eto Y, Sakai N, Nakamura K, Yamamoto T, Yamaoka M, Ikeda T, So S, Tanizawa K, Sonoda H, Sato Y. A Phase 2/3 Trial of Pabinafusp Alfa, IDS Fused with Anti-Human Transferrin Receptor Antibody, Targeting Neurodegeneration in MPS-II. Mol Ther. 2021 Feb 3;29(2):671-679.

Results: Heparan and dermatan concentrations in csf and serum

Okuyama T, Eto Y, Sakai N, Nakamura K, Yamamoto T, Yamaoka M, Ikeda T, So S, Tanizawa K, Sonoda H, Sato Y. A Phase 2/3 Trial of Pabinafusp Alfa, IDS Fused with Anti-Human Transferrin Receptor Antibody, Targeting Neurodegeneration in MPS-II. Mol Ther. 2021 Feb 3;29(2):671-679.

78

Results neurocognition: change in age aequvalent


		Improved		Stabilized		Worsened		
Classification of Disease Phenotype	Total N	Number of Subjects	Proportion (%)	Number of Subjects	Proportion (%)	Number of Subjects	Proportion (%)	
Attenuated	8	1	12.5	7	87.5	0	0.0	
Severe: initial phase	2	1	50.0	1	50.0	0	0.0	
Severe: middle phase	11	1	9.1	7	63.6	3	27.3	
Severe: late phase	4	0	0.0	3	75.0	1	25.0	

Attenuated:	1/8 improved, 7/8 stabilized	
Severe (initial phase):	1/2 improved, 1/2 stabilized	
Severe (middle phase):	1/11 improved, 7/11 stabilized, 3/11 worsened	
Severe (late phase):	0/4 improved, 3/4 stabilized, 1/4 worsened	

 Table 2. Criteria for Judgement of Treatment Response at 52 Weeks

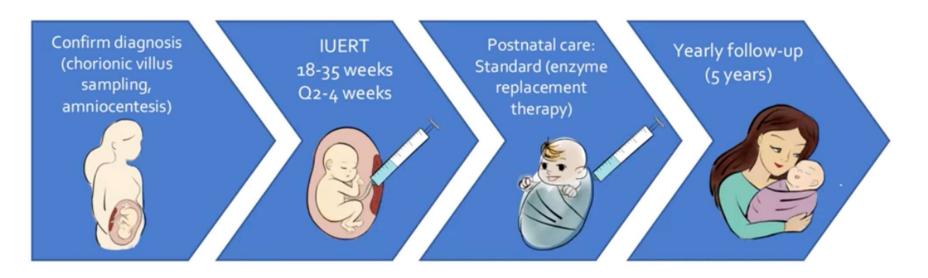
 According to the Kyoto Scale of Psychological Development

Treatment Response/Disease Severity and Clinical Stages	Improvement	Stabilization	Exacerbation	
Attenuated	DQ changes > +0.5 SD	DQ changes ± 0.5 SD	DQ changes < -0.5 SD	
Severe: initial phase				
Severe: middle phase	 AE changes +3 months 	AE changes ± 3 months	AE changes < -3 months	
Severe: late phase				

Okuyama T, Eto Y, Sakai N, Nakamura K, Yamamoto T, Yamaoka M, Ikeda T, So S, Tanizawa K, Sonoda H, Sato Y. A Phase 2/3 Trial of Pabinafusp Alfa, IDS Fused with Anti-Human Transferrin Receptor Antibody, Targeting Neurodegeneration in MPS-II. Mol Ther. 2021 Feb 3;29(2):671-679.

Results Pabinafusp alfa: Data from Japan and Brazil

62 patients


- Japan: 27 patients for 52 weeks and 16 patients for 104 weeks on pabinafusp
- Brazil: 19 patients for 52 weeks and 17 for 104 weeks on pabinafusp

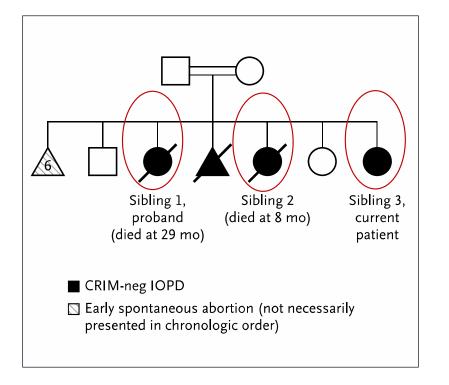
Week	Changes in	Japan					Total	
Week	AE scores	Severe	Attenuated	Total	Severe	Attenuated	Total	10181
	Improvement	2 (11%)	8 (100%)	10 (37%)	8 (57%)	5 (100%)	13 (68%)	23 (50%)
Week 52	Stabilization	13 (68%)	0	13 (48%)	5 (36%)	0	5 (26%)	18 (39%)
	Deterioration	4 (22%)	0	4 (15%)	1 (7%)	0	1 (5%)	5 (11%)
	Improvement	4 (27%)	1 (100%)	5 (31%)	6 (50%)	5 (100%)	11 (65%)	16 (48%)
Week 104	Stabilization	5 (33%)	0	5 (31%)	4 (33%)	0	4 (24%)	9 (27%)
	Deterioration	6 (40%)	0	6 (38%)	2 (17%)	0	2 (12%)	8 (24%)

Attenuated patients: Improvement in all patients after 52 and 104 weeks of treatment Severe patients: stabilization in 39% of patients

Giugliani R, Martins AM, Okuyama T, Eto Y, Sakai N, Nakamura K, Morimoto H, Minami K, Yamamoto T, Yamaoka M, Ikeda T, So S, Tanizawa K, Sonoda H, Schmidt M, Sato Y. Enzyme Replacement Therapy with Pabinafusp Alfa for Neuronopathic Mucopolysaccharidosis II: An Integrated Analysis of Preclinical and Clinical Data. Int J Mol Sci. 2021 Oct 10;22(20):10938.

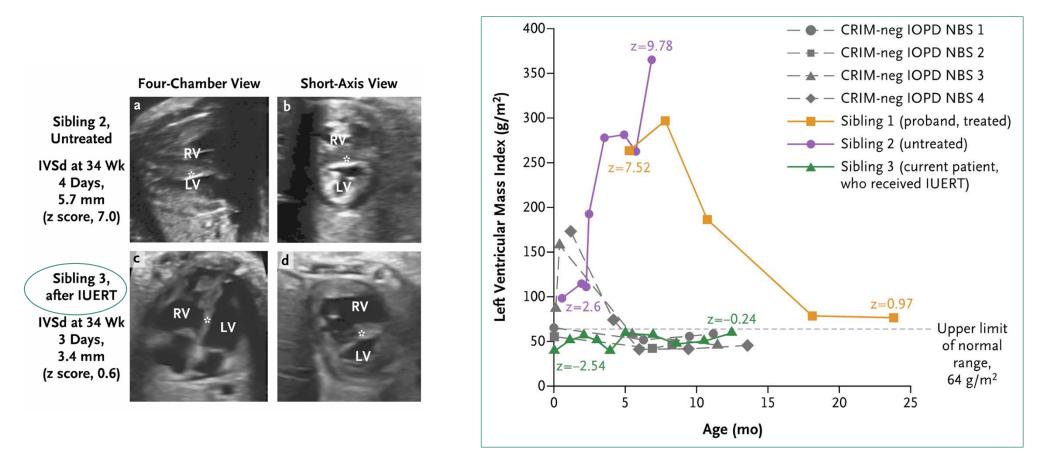

Intrauterine enzyme replacement therapy (IUERT)

Intrauterine Enzyme replacement therapy (IUERT) phase 1 study

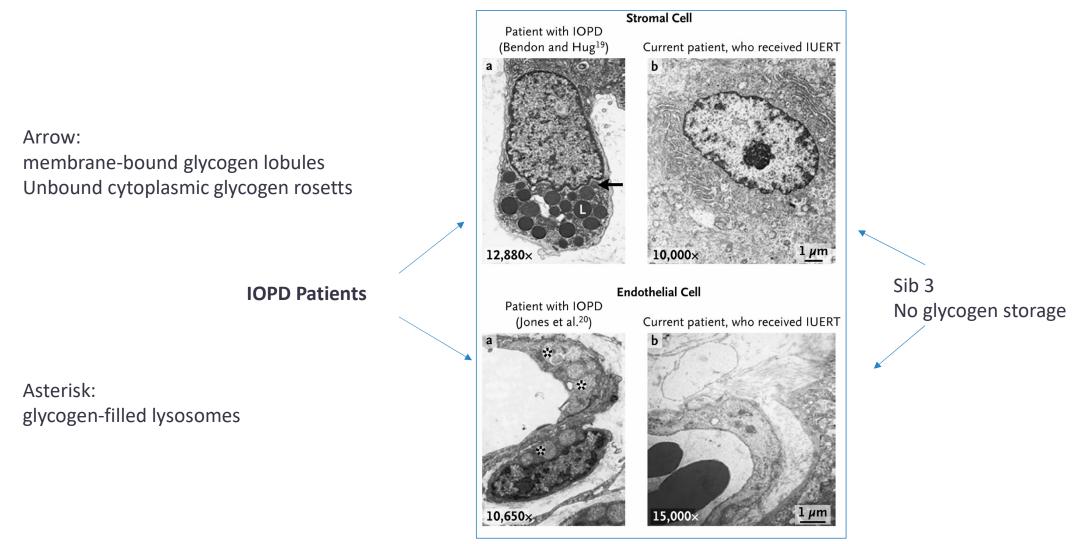

- University of California, San Francisco, USA
- Enzyme administration into the umbilical vein every 2-4 weeks (10 women 18-50 years)
- Diseases: MPS I, II, IVA, VI, VII, M. Pompe (IOPD), M. Gaucher (type II and III), LALD (M. Wolman)
- Dose of ERT weight-adjusted to fetal weight => dosage corresponds to recommended weight-based postnatal dosing
- Start: July 21, End: 2031
- Primary endpoint: Safety
- Secondary endpoints: antibody formation against the enzyme, echocardiography, skeletal examination, growth, mobility and neurocognitive functions
- Rationale:
- high postnatal morbidity and fetal mortality, especially in the context of NIHF (perinatal mortality rate 30-75%)
- In utero-period: period of relative fetal tolerance to immune stimuli
 - => improved response to ERT without development of AK
- Likelihood that IUERT will lead to an improvement in neurological development

Intrauterine enzyme replacement therapy: first in Pompe disease

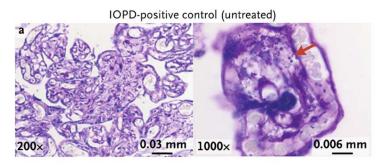
Pedigree of the family


37-year-old 12 gravida 4 para, 2 healthy children, 6 early abortions (3 with IOPD)

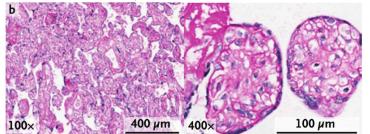
\$\$**b**23:


Disgrid difference of the second seco

Echocardiography findings

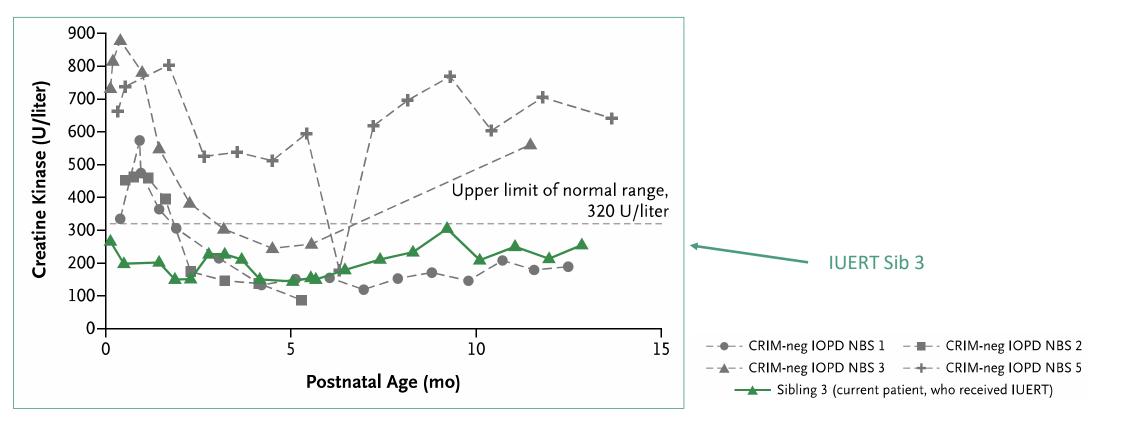


- Decrease in ventricular wall thickness in IUERT-treated Sib3 as opposed to untreated Sib2
- LVMI at Sib 3 in the normal range

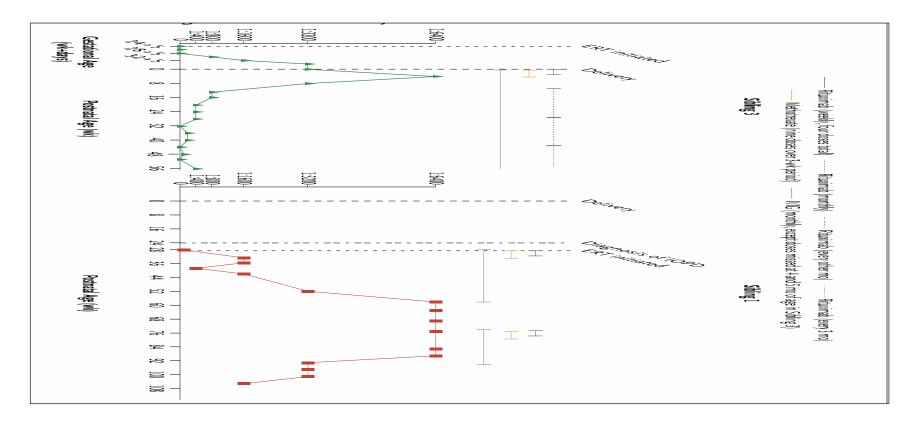

Electron microscopic examination of the placenta

Light microscopic examination of the placenta (PAS staining)

Current patient, who received IUERT


Healthy control

0.03 mm 1000× 0.006 mm **Untreated IOPD patient** PAS positive granules


Current Patient (IUERT) Sib3 No Ganula

Healthy control

CK range at CRIM neg. IOPD patients (treated from 4th day of life ERT) compared to IUERT patient Sib 3

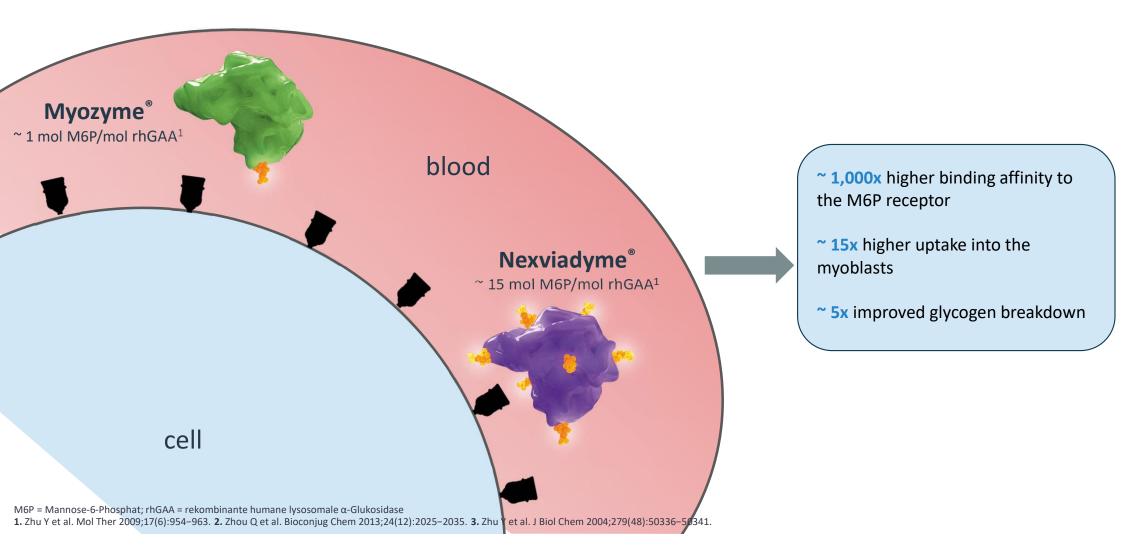
Antibodies

Sib 3: Peak at week 4 postpartum, then drop at week 14

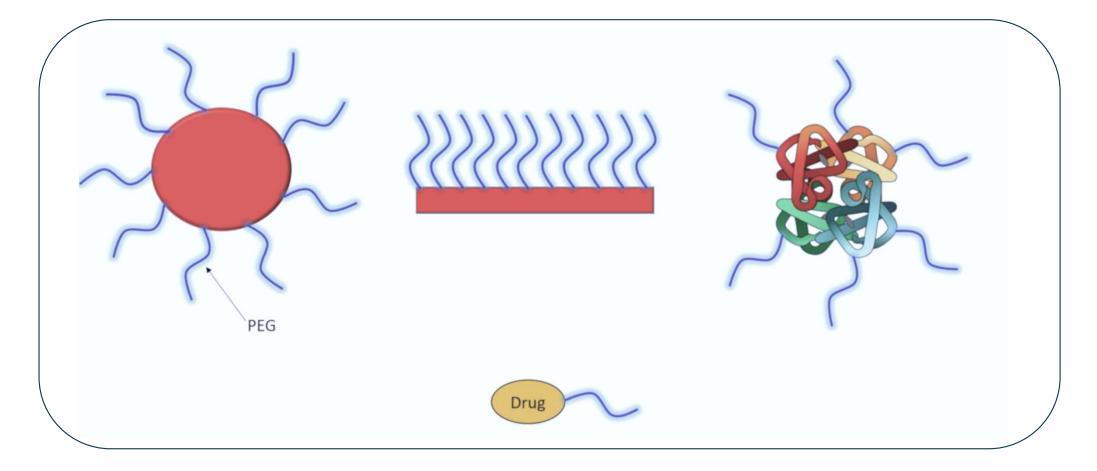
Sib 1: sustained titer at 1:6400 (pharmacokinetic and clinical concerns are present when titers reach a level of > 1:12,800)

Cohen JL, Chakraborty P, Fung-Kee-Fung K, Schwab ME, Bali D, Young SP, Gelb MH, Khaledi H, DiBattista A, Smallshaw S, Moretti F, Wong D, Lacroix C, El Demellawy D, Strickland KC, Lougheed J, Moon-Grady A, Lianoglou BR, Harmatz P, Kishnani PS, MacKenzie TC. In Utero Enzyme-Replacement Therapy for Infantile-Onset Pompe's Disease. N Engl J Med. 2022 Dec 8;387(23):2150-2158.

Summary of IUERT results


6 IUERT Infusionen:

Postnatal observation period up to 13 months: No AEs Laboratory: Normal CK values at birth until the end of the observation period (13 months) Development: Normal fine and gross motor development, running at 11.5 months Heart: Echocardiography: no LVH, normal LVMI ECG: normal Placenta: Light and electron microscopy: No granules, no glycogen rosettes Ab development: from the 3rd IUERT, peak at week 34+5, drop postnatally 8th week (in the clinically non-significant range) GAA and GLC4 Normalization


IUERT appears to be safe, there is a significant normalization of the examined parameters up to 13 months of age

Further ideas to improve ERT

Advanced ERT: increasing M6P receptors (in Pompe disease)

Advanced ERT: PEGylated enzyme leads to longer half-life (longer circulation in blood)

https://www.youtube.com/watch?app=desktop&v=72jz-q6jP54

Hematopoetic stem cell transplantation

Hematopoetic stem cell transplantation (HSCT)

MPS I:

First BMT in an 1 year old Hurler patient 1981 with skeletal abnormalities, coarse face, corneal clouding, hepatosplenomegaly

- Nearly normal Iduronidase activity
- Dropping down of GAG excertion in urine
- Hepatosplenomegaly and occular findings resolved
- arrest of other disease findings
- by now, > 200 MPS I H patients were transplanted
- Survival into andulthood after HSCT (> 50% of patients were alive 10 years after transplantation)
- Stem cells are crossing the BBB: improvement of neurocognition
- Improvemet of musculoskeletal, ocular, cardiac and pulmonary involvement

In MPS I Hurler patients, HSCT is the standard of care when performed > 2.5 yeras of age Mortality 5-10%

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.

Hematopoetic stem cell transplantation (HSCT)

MPSII:

First BMT in MPS II in 1986

- \Rightarrow By now, > 100 MPS II patients were transplanted
- \Rightarrow improvement of somatic signs but unclear efficacy of neurocognition

MPS III:

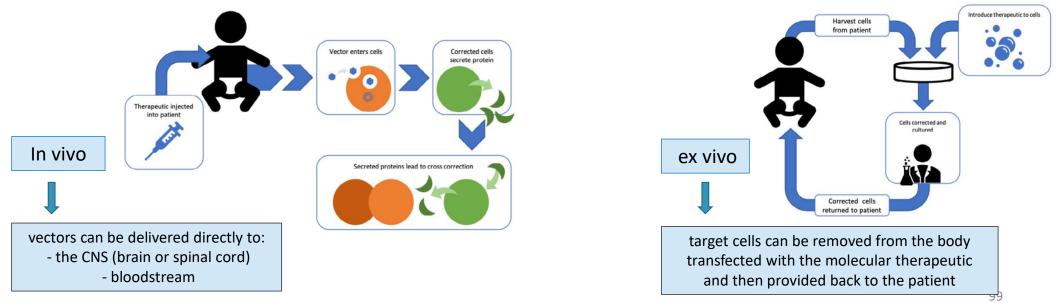
Unclear efficacy on neurodegeneration (too late transplantation?)

Other MPSs:

=> Lack of data, may improve somatic signs

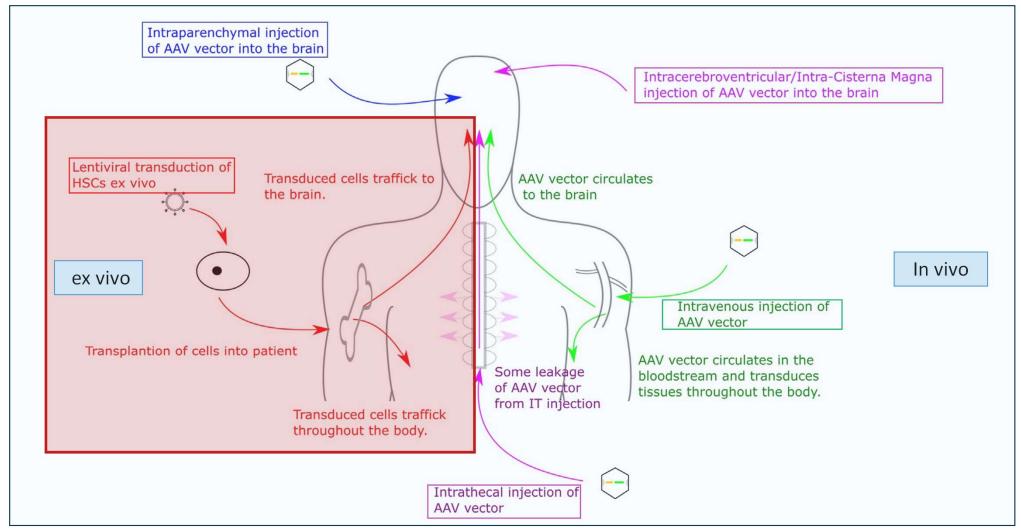
HSCT can induce tolerance (in case of immune intolerance against ERT or gene therapy) Autologous HSCT can serve as the mechanism of delivery of gene therapy

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.


Gene therapy

History of gene therapy

Gene Therapy Clinical Trial Monitoring Discovery of the DNA structure 1953 1999 Plan and Gene Transfer Safety Symposia FDA Approval AAV based in vivo gene therapy for 2019 SMA (EMA 2020) • Jesse Gelsinger, an 18-year-old boy with a relatively mild form of ornithine transcarbamylase (OTC) deficiency, died while participating in an adenoviral gene therapy trial due to a severe 1961-Youngest patient (4 day-old-boy) received Discovery of the genetic code 2021 immune reaction to the vector. Investigators later found that 1966 gene therapy for SMA several other patients had experienced serious side effects after being injected, but Jesse was never informed of them. This caused the FDA and NIH to enhance patient protection Development of a technique through 2 new programs, the Gene Therapy Clinical Trial 1973 Monitoring Plan and the Gene Transfer Safety Symposia. to transer gene material First gene therapy appoved in China 2003 (skin cancer) First gene therapy was tested 1980 without permission (did not EMA approved frist AAV based gene therapy for LPLD 2012 work) removed from the market 2017 due to limited use First gene therapy appoved in USA 2017 First gene therapy trial using 1990 (ALL) new viral vector technology • 2 patients with severe combined immunodeficiency (SCID) 24 gene therapies are approved received treatment using novel gamma retrovirus vector technology. The results were mixed, with 1 modest response 18 studies in lysosomal diseases and 1 limited response


Procedure of gene therapy

- genetic material (genomic DNA, coding DNA or RNA) is inserted into human cells to:
 - 1) correct the underlying molecular error
 - 2) exogenously express the deficient enzyme
- patient's own cells begin producing the desired enzyme, bypassing their underlying metabolic defect
- critical hurdle: delivery
- Typically, done with therapeutically engineered viruses (e.g. modified adeno-associated virus (AAV))

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.

Routes for gene therapy administration

Wood SR, Bigger BW. Delivering gene therapy for mucopolysaccharide diseases. Front Mol Biosci. 2022 Sep 12;9:965089

Advantages and disadvantages of gene therapy strategies

Gene therapy strategies	Advantages	Disadvantages
Retroviral vectors	 Incorporates gene of interest into host's genome for long-term correction Use of a modified long terminal repeat can reduce the risk of insertional mutagenesis 	 Possibility of insertional mutagenesis due to nontargeted incorporation into the genome Ex vivo approaches may have a long waiting period in which disease progression can worsen the patient's condition High dose of retroviral vector necessary for in vivo correction Immune suppressant necessary for long-term expression in vivo A modified LTR can reduce transduction rates to a point where their effectiveness is limited
Lentiviral vectors	 Nonreplicating Stably integrate into genomes of many mammalian cell types 	 Unable to establish long-term correction with single injection Treatment of neonates may be necessary for long-term correction Low transduction efficiency to HSPCs Risks of insertional mutagenesis and immunogenicity
AAV vectors	 Lack viral DNA Engineered to deliver DNA cargo through cell membrane Nonreplicating Able to target specific tissue types 	 When targeting the liver, hepatotoxicity is a possibility Short-term expression without gene editing May require use of immunosuppressant Possibility of inducing insertional mutagenesis related cancers Possibility of inducing dorsal root ganglion pathologies Concerns with cell specificity and necessary dose levels
Adenovirus	 Able to transduce replicating and nonreplicating cells. Do not integrate into host genome without gene editing aids Possible to target specific cell types with fiber modifications Unconnected with germ-line mutagenesis 	 Patient death in 1999 due to high dose and large immune response Possibility of hepatotoxicity when liver- targeting
Gene editing	 Potential for permanent correction. The targeting ability of CRIPSR allows for carefully designed changes to the genome 	 Requires a method for delivery to cells On- and off-target effects

Hurt SC, Dickson PI, Curiel DT. Mucopolysaccharidoses type I gene therapy. J Inherit Metab Dis. 2021 Sep;44(5):1088-1098.

Ongoing gene therapy trials (MPS I, II, IIIA, IIIB, and MPS VI)

Clinical trial identifier	Title	Status	Condition	Vector	Delivery	Sponsor	Phas
NCT03580083	RGX-111 Gene Therapy in Patients With MPS I	Ongoing	MPSI	AAV2/9	Intrathecal	Regenexbio	1/11
NCT03488394	Gene Therapy With Modified Autologous Hematopoietic Stem Cells for the Treatment of Patients With Mucopolysaccharidosis Type I, Hurler Variant (TigetT10_MPSIH)	Ongoing	MPSI	LV	HSCGT	IRCCS San Raffaele	I/II
NCT02702115	A Phase I/2, Multileft, Open-label, Single-dose, Dose-ranging Study to Assess the Safety and Tolerability of SB-318, a rAAV2/6-based Gene Transfer in Subjects With Mucopolysaccharidosis I (MPS I)	Ongoing	MPSI	AAV2/6 Zinc-Finger Nuclease	Intravenous	Sangamo Therapeutics	I/II
NCT02702115	Ascending Dose Study of Genome Editing by the Zinc Finger Nuclease (ZFN) Therapeutic SB-318 in Subjects With MPS I	Ongoing	MPSI	AAV2/6 Zinc-Finger Nuclease	Intravenous	Sangamo Therapeutics	I/II
NCT03566043	RGX-121 Gene Therapy in Patients With MPS II (Hunter Syndrome)	Ongoing	MPSII	AAV2/9	Intra- cerebroventricular	RegenexBio	I/II
NCT04571970	RGX-121 Gene Therapy in Children 5 Years of Age and Over With MPS II (Hunter Syndrome)	Ongoing	MPSII	AAV2/9	Intra- cerebroventricular	RegenexBio	I/II
NCT04597385	Long-term Follow-Up for RGX-121	Ongoing	MPSII	AAV2/9	Intra- cerebroventricular	RegenexBio	I/II
NCT00004454	Phase I/II Study of Retroviral- Mediated Transfer of Iduronate-2- Sulfatase Gene Into Lymphocytes of Patients With Mucopolysaccharidosis II (Mild Hunter Syndrome)	Completed	MPSII	Retrovirus	Intravenous injection of Lymphocytes	Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/ University of Minnesota	I/II
NCT03041324	T03041324 A Phase I/2, Multileft, Open-label, Ongoing MPSII AAV2/6 Intravenous Sangam Single-dose, Dose-ranging Study to Zinc-Finger Assess the Safety and Tolerability of SB-913, a rAAV2/6-based Gene Transfer in Subjects With Mucopolysaccharidosis II (MPS II)		Sangamo Therapeutics	I/II			
NCT03041324	Ascending Dose Study of Genome Editing by the Zinc Finger Nuclease (ZFN) Therapeutic SB-913 in Subjects With MPS II	Terminated	MPSII	AAV2/6 Zinc-Finger Nuclease	Intravenous	Sangamo Therapeutics	I/II
NCT04628871	Long Term Follow-up (LTFU) of Subjects Who Received SB-318, SB- 913, or SB-FIX (LTFU)	Ongoing	MPSI MPSII	AAV2/6 Zinc-Finger Nuclease	Intravenous	Sangamo Therapeutics	I/II
NCT01474343	Intracerebral Gene Therapy for Sanfilippo Type A Syndrome	Completed	MPSIIIA	AAVrh10	Intraparenchymal	Lysogene	I/II

Wood SR, Bigger BW. Delivering gene therapy for mucopolysaccharide diseases. Front Mol Biosci. 2022 Sep 12;9:965089.

Clinical trial identifier	Title	Status	Condition	Vector	Delivery	Sponsor	Phase
NCT02053064	Long-term Follow-up of Sanfilippo Type A Patients Treated by Intracerebral SAF-301 Gene Therapy	Completed	MPSIIIA	AAVrh10	Intracranial	Lysogene	I/II
NCT03612869	Study of AAVrh10-h.SGSH Gene Therapy in Patients With Mucopolysaccharidosis Type IIIA (MPS IIIA) (AAVance)	Ongoing	MPSIIIA	AAVrh10	Intracranial	Lysogene	II/III
2015–000359–26	Phase I/II safety, tolerability and initial efficacy study of adeno- associated viral vector serotype 9 containing human sulfamidase gene after intracerboventricular administration to patients with MPSIIIA.	Ongoing	MPSIIIA	AAV2/9	Intra- cerebroventricular	Laboratorios del Dr. Esteve, S.A.	I/II
NCT02716246	Phase I/II Gene Transfer Clinical Trial of scAAV9.U1a.hSGSH for Mucopolysaccharidosis (MPS) IIIA	Ongoing	MPSIIIA	AAV2/9	Intravenous	Abeona Therapeutics (ABO-102 now with Ultragenyx)	I/II
NCT04088734	A Phase I/II Open Label, Single-dose, Gene Transfer Study of scAAV9.U1a.hSGSH (ABO-102) in Patients With Middle and Advanced Phases of MPS IIIA Disease	Terminated	MPSIIIA	AAV2/9	Intravenous	Abeona Therapeutics	I/II
NCT04360265	A Long-term Follow-up Study of Patients With MPS IIIA Treated With ABO-102	Ongoing	MPSIIIA	AAV2/9	Intravenous	Abeona Therapeutics	I/II
NCT04201405	Gene Therapy With Modified Autologous Hematopoietic Stem Cells for Patients With Mucopolysaccharidosis Type IIIA	Ongoing	MPSIIIA	LV	HSCGT	Orchard Therapeutics/ University of Manchester	I/II
NCT03300453	Intracerebral Gene Therapy in Children With Sanfilippo Type B Syndrome	Completed	MPSIIIB	AAV2/5	Intraparenchymal	Institut Pasteur/UniQure Biopharma B.V.	I/II
NCT03315182	Gene Transfer Clinical Trial for Mucopolysaccharidosis (MPS) IIIB (MPSIIIB)	Terminated	MPSIIIB	AAV2/9	Intravenous	Abeona Therapeutics	1/11
NCT04655911	A Long-term Follow-up Study of Patients With MPS IIIB Treated With ABO-101	Ongoing	MPSIIIB	AAV2/9	Intravenous	Abeona Therapeutics	I/II
NCT03173521	Gene Therapy in Patients With Mucopolysaccharidosis Disease	Ongoing	MPSVI	AAV2/8	Intravenous	Fondazione Telethon	I/II

102

Ongoing gene therapy trials (MPS I, II, IIIA, IIIB, and MPS VI)

Clinical trial identifier	Title	Status	Condition	Vector	Delivery	Sponsor	Phase	Clinical trial identifier	Title	Status	Condition	Vector	Delivery	Sponsor	Phas
NCT03580083	RGX-111 Gene Therapy in Patients With MPS I	Ongoing	MPSI	AAV2/9	Intrathecal	Regenexbio	1/11	NCT02053064	Long-term Follow-up of Sanfilippo Type A Patients Treated by	Completed	MPSIIIA	AAVrh10	Intracranial	Lysogene	I/II
NCT03488394	Gene Therapy With Modified Autologous Hematopoietic Stem Cells for the Treatment of Patients With Mucopolysaccharidosis Type I, Hurler Variant (TigetT10_MPSIH)	Ongoing	MPSI	LV	HSCGT	IRCCS San Raffaele	I/II	NCT03612869	Intracerebral SAF-301 Gene Therapy Study of AAVrh10-h.SGSH Gene Therapy in Patients With Mucopolysaccharidosis Type IIIA	Ongoing	MPSIIIA	AAVrh10	Intracranial	Lysogene	II/III
NCT02702115	A Phase I/2, Multileft, Open-label, Single-dose, Dose-ranging Study to Assess the Safety and Tolerability of Sb-318, a rAAV2/o-based Gene Transfer in Subjects With Mucopolysaccharidosis I (MPS I)	Ongoing	MPSI	AAV2/6 Zinc-Finger Nuclease	Intravenous	Sangamo Therapeutics	I/II	2015-000359-26	(MPS IIIA) (AAVance) Phase I/II safety, tolerability and initial efficacy study of adeno- associated viral vector serotype 9 containing human sulfamidase gene	Ongoing	MPSIIIA	AAV2/9	Intra- cerebroventricular	Laboratorios del Dr. Esteve, S.A.	I/II
NCT02702115	Ascending Dose Study of Genome Editing by the Zinc Finger Nuclease (ZFN) Therapeutic SB-318 in Subjects With MPS I	Ongoing	MPSI	AAV2/6 Zinc-Finger Nuclease	Intravenous	5 MPS	I (1	o, 4 in v	after intracerebroventricular ients with						
NCT03566043	RGX-121 Gene Therapy in Patients With MPS II (Hunter Syndrome)	Ongoing	MPSII	AAV2/9	Intra- cerebroventricular	8 MPS			sfer Clinical .hSGSH for is (MPS) IIIA	Ongoing	MPSIIIA	AAV2/9	Intravenous	Abeona Therapeutics (ABO-102 now with Ultragenyx)	I/II
NCT04571970	RGX-121 Gene Therapy in Children 5 Years of Age and Over With MPS II (Hunter Syndrome)	Ongoing	MPSII	AAV2/9	Intra- cerebroventricular	7 MPS 4 MPS		vivo, 6 i vivo)	D VIVO) pel, Single-dose, of (ABO-102) in	Terminated	MPSIIIA	AAV2/9	Intravenous	Abeona Therapeutics	I/II
NCT04597385	Long-term Follow-Up for RGX-121	Ongoing	MPSII	AAV2/9	Intra- cerebroventricular			,	and Advanced Phases of MPS IIIA Disease						
NCT00004454	Phase I/II Study of Retroviral- Mediated Transfer of Iduronate-2- Sulfatase Gene Into Lymphocytes of Patients With Mucopolysaccharidosis II (Mild Hunter Syndrome)	Completed	MPSII	Retrovirus	Intravenous injection of Lymphocytes	Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/ University of Minnesota	1/11	NCT04360265	A Long-term Follow-up Study of Patients With MPS IIIA Treated With ABO-102	Ongoing	MPSIIIA	AAV2/9	Intravenous	Abeona Therapeutics	I/II
NCT03041324	A Phase I/2, Multileft, Open-label, Single-dose, Dose-ranging Study to Assess the Safety and Tolerability of SB-913, a tAAV2/6-based Gene Transfer in Subjects With Mucopolyasccharidosis II (MPS II)	Ongoing	MPSII	AAV2/6 Zinc-Finger Nuclease	Intravenous	Sangamo Therapeutics	1/11	NCT04201405	Gene Therapy With Modified Autologous Hematopoietic Stem Cells for Patients With Mucopolysaccharidosis Type IIIA	Ongoing	MPSIIIA	LV	HSCGT	Orchard Therapeutics/ University of Manchester	I/II
NCT03041324	Ascending Dose Study of Genome Editing by the Zinc Finger Nuclease (ZFN) Therapeutic SB-913 in Subjects With MPS II	Terminated	MPSII	AAV2/6 Zinc-Finger Nuclease	Intravenous	Sangamo Therapeutics	I/II	NCT03300453	Intracerebral Gene Therapy in Children With Sanfilippo Type B Syndrome	Completed	MPSIIIB	AAV2/5	Intraparenchymal	Institut Pasteur/UniQure Biopharma B.V.	I/II
NCT04628871	Long Term Follow-up (LTFU) of Subjects Who Received SB-318, SB- 913, or SB-FIX (LTFU)	Ongoing	MPSI MPSII	AAV2/6 Zinc-Finger Nuclease	Intravenous	Sangamo Therapeutics	I/II	NCT03315182	Gene Transfer Clinical Trial for Mucopolysaccharidosis (MPS) IIIB (MPSIIIB)	Terminated	MPSIIIB	AAV2/9	Intravenous	Abeona Therapeutics	I/II
NCT01474343	Intracerebral Gene Therapy for Sanfilippo Type A Syndrome	Completed	MPSIIIA	AAVrh10	Intraparenchymal	Lysogene	I/II	NCT04655911	A Long-term Follow-up Study of Patients With MPS IIIB Treated With ABO-101	Ongoing	MPSIIIB	AAV2/9	Intravenous	Abeona Therapeutics	I/II
								NCT03173521	Gene Therapy in Patients With Mucopolysaccharidosis Disease	Ongoing	MPSVI	AAV2/8	Intravenous	Fondazione Telethon	I/II

Wood SR, Bigger BW. Delivering gene therapy for mucopolysaccharide diseases. Front Mol Biosci. 2022 Sep 12;9:965089.

Example for gene therapy trials in MPS I

• two ongoing phase I/II GT trials:

•

.

Ex vivo	In vivo
OTL-203 by Orchard Therapeutics autologous hematopoietic stem cell approach lentiviral vector encoding the a-L-iduronidase (IDUA) gene 8 patients with MPS IH received after myeloablative conditioning Interim results showed a safety profile like autologous HSCT: - all patients showed prompt, sustained engraftment and supraphysiological blood and CSF IDUA levels	 RGX-111 by REGENEXBIO a copy of a-L-iduronidase (IDUA) gene packaged into an AAV-9 vector administered directly into the CNS The trial's endpoints are safety, biomarker reduction, and improvements in neurodevelopment 5 patients have been successfully dosed no serious drug-related adverse events Biomarker and neuro- developmental assessments also indicate an encouraging CNS response
 - urine and CSF GAGs decreased appropriately - patients showed stable neurocognitive performance with ongoing motor development 	 no drug-related serious adverse events reduction in CNS-relevant biomarkers improvement in caregiver reported outcomes positive trends in neurodevelopment.

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.

Pros and cons of gene therapy

pros	cons
Permanent approach	increasing the risk for genotoxicity
 no drug-related serious AEs 	Vector needs to pass several structures and need to promote high gene expression
 reduction in CNS-relevant biomarkers 	Difficulties due to attacks of the immune system
 improvement in caregiver reported outcomes 	High costs
 positive trends in neurodevelopment 	

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.

Other treatments

Anti-inflammatory therapy

- e.g. Adalimumab (TNF*α* inhibitor) immunmodulator on skeletal disease
 => placebo-controlled double blind study in MPS I, II and VI
 - => pilot study showed improvement in physical function and pain

Substrate reduction therapy

• e.g. genistein- no effect in clinical trials (MPS III)

Oral GAG clearance

- e.g. Odiparcil
- \Rightarrow odiparcil effectively diverts the synthesis of cellular glycosaminoglycans into secreted soluble species
- \Rightarrow Phase I/II in MPS VI

Subcutaneous GAG clearance

S.c. GAG clearance

Pentosan Polysulphate (PPS)

 \Rightarrow Single center study in adult MPS I patients (reduced pain, improvements in joint range of motion)

Fetal therapies

• e.g. intrauterine enzyme replacement therapy

Penon-Portmann M, Blair DR, Harmatz P. Current and new therapies for mucopolysaccharidoses. Pediatr Neonatol. 2023 Feb;64 Suppl 1:S10-S17.

Entchev E, Jantzen I, Masson P, Bocart S, Bournique B, Luccarini JM, Bouchot A, Lacombe O, Junien JL, Broqua P, Tallandier M. Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI-Evidence from in vitro and in vivo models. PLoS One. 2020 May 15;15(5):e0233032.

Thank you for your attention!!

Christina.lampe@paediat.med.uni-giessen.de